• Title/Summary/Keyword: PWm Rectifier

Search Result 287, Processing Time 0.025 seconds

Control and Analysis of Vienna Rectifier Used as the Generator-Side Converter of PMSG-based Wind Power Generation Systems

  • Zhao, Hongyan;Zheng, Trillion Q.;Li, Yan;Du, Jifei;Shi, Pu
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.212-221
    • /
    • 2017
  • Permanent-Magnet Synchronous Generators (PMSGs) are used widely in Wind Power Generation Systems (WPGSs), and the Vienna rectifier was recently proposed to be used as the generator-side converter to rectify the AC output voltage in PMSG-based WPGS. Compared to conventional six-switch two-level PWM (2L-PWM) converters, the Vienna rectifier has several advantages, such as higher efficiency, improved total harmonic distortion, etc. The motivation behind this paper is to verify the performance of direct-driven PMSG wind turbine system based-Vienna rectifier by using a simulated direct-driven PMSG WPGS. In addition, for the purpose of reducing the reactive power loss of PMSGs, this paper proposes an induced voltage sensing scheme which can make the stator current maintain accurate synchronization with the induced voltage. Meanwhile, considering the Neutral-Point Voltage (NPV) variation in the DC-side of the Vienna rectifier, a NPV balancing control strategy is added to the control system. In addition, both the effectiveness of the proposed method and the performance of the direct-driven PMSG based-Vienna rectifier are verified by simulation and experimental results.

Modeling and Analysis of Three Phase PWM Converter (3상 PWM 컨버터의 모델링 및 해석)

  • 조국춘;박채운;최종묵
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.328-335
    • /
    • 1999
  • Three phase full bridge rectifier has been used to obtain dc voltage from three phase ac voltage source. The rectifier system has drawbacks that power factor is low and power flow is unidirectional. Therefore, when dc voltage increases due to regeneration of power the dynamic resister for dissipation of regeneration power must be installed. But three phase PWM converter can be controlled to operate with unity power factor and bidirectional power flow. Therefore when the PWM converter is used as do supply system, the dissipating resistor is not necessary. On this thesis, in order to design a controller having good performance, the hee phase PWM converter is completely modeled by using circuit DQ-transformation and thus a general and simple instructive equivalent circuit is obtained; the inductor set becomes a second order gyrator-coupled system and three phase inverter becomes a transformer as well. Under given phase angle(${\alpha}$) and modulation index(MI) of the three phase inverter, the dc and ac characteristics are obtained by analysis of the transformed equivalent circuit The validity of the equivalent circuit is confirmed through PSPICE simulation. And based on the dc and ac characteristics a controller with unity power factor is proposed.

  • PDF

Input and Output Control of PWM Rectifiers using a Nonlinear Control Technique (비선형 제어기법을 이용한 PWM 정류기의 입출력 제어)

  • Lee, Dong-Chun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.12
    • /
    • pp.701-708
    • /
    • 1999
  • The PWM rectifiers are capable of supplying sinusoidal current control and unity power factor control on the input side and dc output voltage control on the output side. By applying nonlinear control to the PWM rectifiers, the responses of input current and output voltage can be improved and due to fast voltage control the output electrolytic capacitor can be reduced remarkably. In addition, it is checked whether or not the current capacity of the reduced-size capacitor allows the ripple current of the rectifier. The nonlinear control technique gives a good performance for supply voltage disturbances. The validity of the proposed scheme has been verified by the experiment using DSP.

  • PDF

One-Cycle Control Strategy for Dual-Converter Three-Phase PWM Rectifier under Unbalanced Grid Voltage Conditions

  • Xu, You;Zhang, Qingjie;Deng, Kai
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.268-277
    • /
    • 2015
  • In this paper, a dual-converter three-phase pulse width modulation (PWM) rectifier based on unbalanced one-cycle control (OCC) strategy is proposed. The proposed rectifier is used to eliminate the second harmonic waves of DC voltage and distortion of line currents under unbalanced input grid voltage conditions. The dual-converter PWM rectifier employs two converters, which are called positive-sequence converter and negative-sequence converter. The unbalanced OCC system compensates feedback currents of positive-sequence converter via grid negative-sequence voltages, as well as compensates feedback currents of negative-sequence converter via grid positive-sequence voltages. The AC currents of positive- and negative-sequence converter are controlled to be symmetrical. Thus, the workload of every switching device of converter is balanced. Only one conventional PI controller is adopted to achieve invariant power control. Then, the parameter tuning is simplified, and the extraction for positive- and negative-sequence currents is not needed anymore. The effectiveness and the viability of the control strategy are demonstrated through detailed experimental verification.

A Study On the Output Voltage and Power Factor of the Three-Phase Four Switches Z-Source PWM Rectifier (3상 4 스위치 Z-소스 PWM정류기의 출력전압과 역률에 관한 연구)

  • Qiu, Xiao-Dong;Eom, Jun-Hyun;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.48-49
    • /
    • 2013
  • In this paper, the four switches three-phase Z-source rectifier is studied. The conventional three-phase four switches rectifier can only either perform buck or boost operation, distortion and unbalance of the input current are serious. Therefore, we proposed the four switches three-phase Z-source rectifier which can realize buck function simply by applying the Z-impedance network. We will verify characteristics of Z-network by the simulation and experiment.

  • PDF

Control of Three-Phase Three-Switch Buck-Type Rectifier in EV Rapid Charging Systems

  • Chae, Beomseok;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.189-190
    • /
    • 2015
  • This paper investigates an economic and highly efficient power converter topology and its modulation scheme for 60kW rapid EV charger system. The target system consists of three-phase three-switch buck-type rectifier topology. A new Carrier Based PWM scheme along with its simple implementation using logic gates is introduced in this paper. This PWM scheme replaces the diode rectifier equivalent switching state with an active switching state producing the effectively same current flowing path. As a result, the distortion of input current during the polarity reversal of capacitor line voltage can be mitigated. The proposed modulation technique is confirmed through simulation verification. The proposed modulation technique and its implementation scheme can expand the operation range of the three-phase three-switch buck-type rectifier having ac input and capacitor ripple current of high quality.

  • PDF

Simulator for 3 Phase Induction Motor with LCL Filter and PWM Rectifier (LCL 필터와 PWM 정류기를 이용한 3상 유도전동기의 시뮬레이터)

  • Cho, Kwan Yuhl;Kim, Hag Wone
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.861-869
    • /
    • 2020
  • A dynamo set for a high-power induction motor drive is expensive and needs a long time to manufacture. Therefore, the development of a simulator that functions as the induction motor and load equipment is required. A load simulator of an inverter for a high-power three-phase induction motor consists of a reactor and three-phase PWM inverter. Therefore, it cannot simulate the dynamic characteristics of an induction motor and functions only as a load. In this paper, a real-time simulator is proposed to simulate a model of an induction motor and the load characteristics based on an LCL filter and three-phase PWM rectifier for a three-phase induction motor. The currents of a PWM inverter that simulate the stator currents of the motor are controlled by the inductor currents and capacitor voltages of the LCL filter. The capacitor voltages of the LCL filter simulate the induced voltages in the stator windings by the rotating rotor fluxes of the motor, and the capacitor voltages are controlled by the inductor currents and a PWM rectifier. The rotor currents, the stator and rotor flux linkages, the electromagnetic torque, the slip frequency, and the rotor speed are derived from the inverter currents and the motor parameters. The electrical and mechanical model characteristics and the operation of vector control were verified by MATLAB/Simulink simulation.

Research on a Multi-Objective Control Strategy for Current-source PWM Rectifiers under Unbalanced and Harmonic Grid Voltage Conditions

  • Geng, Yi-Wen;Liu, Hai-Wei;Deng, Ren-Xiong;Tian, Fang-Fang;Bai, Hao-Feng;Wang, Kai
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.171-184
    • /
    • 2018
  • Unbalanced and distorted grid voltages cause the grid side current of a current source PWM rectifier to be heavily distorted. They can also cause the DC-link current to fluctuate with a huge amplitude. In order to enhance the performance of a current-source PWM rectifier under unbalanced and harmonic grid voltage conditions, a mathematical model of a current-source PWM rectifier is established and a flexible multi-objective control strategy is proposed to control the DC-link current and grid-current. The fundamental positive/negative sequence, $5^{th}$ and $7^{th}$ order harmonic components of the grid voltage are first separated with the proposed control strategy. The grid current reference are optimized based on three objectives: 1) sinusoidal and symmetrical grid current, 2) sinusoidal grid current and elimination of the DC-current $2^{nd}$ order fluctuations, and 3) elimination of the DC-current $2^{nd}$ and $6^{th}$ order fluctuations. To avoid separation of the grid current components, a multi-frequency proportional-resonant controller is applied to control the fundamental positive/negative sequence, $5^{th}$ and $7^{th}$ order harmonic current. Finally, experimental results verify the effectiveness of proposed control strategy.

Zero-Voltage Switching Two-Transformer Full-Bridge PWM Converter With Lossless Diode-Clamp Rectifier (새로운 무 손실 다이오드 클램프 회로를 채택한 두 개의 트랜스포머를 갖는 영 전압 스위칭 풀 브릿지 컨버터)

  • Yoon H. K.;Han S. K.;Park J. S.;Moon G. W.;Youn M. J.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.551-555
    • /
    • 2004
  • The two-transformer full bridge (TTFB) PWM converter has two transformers which act as the output inductor as well as the main transformer, i.e. as the forward and the flyback transformer. Although the doubled leakage inductor of the TTFB makes it easier to achieve the zero-voltage switching (ZVS) of the lagging leg switch along the wide load range, it instigates a serious voltage ringing in the secondary rectifier diodes, which would require the dissipative snubber circuit, cause the serious power dissipation, and increase the voltage stress across those diodes. To overcome these problems, a, new lossless diode-clamp rectifier (LDCR) is employed as the output rectifier, which helps the voltage across rectifier diodes to be clamped on a half the output voltage $(V_o/2)$ or the output voltage $(V_o)$. Therefore, no dissipative snubber for rectifier diodes is needed and a high efficiency as well as low noise output voltage can be realized. The operations, analysis and design consideration of proposed converter are presented in this paper. To verify the validity of the proposed converter, experimental results from a 425W, 385-170Vdc prototype for the plasma display panel (PDP) sustaining power module (PSPM) are presented.

  • PDF

Characteristic analysis of input and output filter for UPS system (무정전전원장치용 입출력 필터 특성 분석)

  • Lee Dong Ju;Jung Seok Un;Lee Kyung Seok
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.803-806
    • /
    • 2004
  • In this paper, configuration of prototype 300kVA UPS system with unity input power factor is briefly described and a various types of rectifier for UPS application are discussed. Input LCL filter for PWM rectifier and output LC filter for PWM inverter are designed as a prototype and their principal characteristics are discussed.

  • PDF