• 제목/요약/키워드: PWR core

검색결과 177건 처리시간 0.021초

Physics study for high-performance and very-low-boron APR1400 core with 24-month cycle length

  • Do, Manseok;Nguyen, Xuan Ha;Jang, Seongdong;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.869-877
    • /
    • 2020
  • A 24-month Advanced Power Reactor 1400 (APR1400) core with a very-low-boron (VLB) concentration has been investigated for an inherently safe and high-performance PWR in this work. To develop a high-performance APR1400 which is able to do the passive frequency control operation, VLB feature is essential. In this paper, the centrally-shielded burnable absorber (CSBA) is utilized for an efficient VLB operation in the 24-month cycle APR1400 core. This innovative design of the VLB APR1400 core includes the optimization of burnable absorber and loading pattern as well as axial cutback for a 24-month cycle operation. In addition to CSBA, an Er-doped guide thimble is also introduced for partial management of the excess reactivity and local peaking factor. To improve the neutron economy of the core, two alternative radial reflectors are adopted in this study, which are SS-304 and ZrO2. The core reactivity and power distributions for a 2-batch equilibrium cycle are analyzed and compared for each reflector design. Numerical results show that a VLB core can be successfully designed with 24-month cycle and the cycle length is improved significantly with the alternative reflectors. The neutronic analyses are performed using the Monte Carlo Serpent code and 3-D diffusion code COREDAX-2 with the ENDF/B-VII.1.

CSPACE for a simulation of core damage progression during severe accidents

  • Song, JinHo;Son, Dong-Gun;Bae, JunHo;Bae, Sung Won;Ha, KwangSoon;Chung, Bub-Dong;Choi, YuJung
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3990-4002
    • /
    • 2021
  • CSPACE (Core meltdown, Safety and Performance Analysis CodE for nuclear power plants) for a simulation of severe accident progression in a Pressurized Water Reactor (PWR) is developed by coupling of verified system thermal hydraulic code of SPACE (Safety and Performance Analysis CodE for nuclear power plants) and core damage progression code of COMPASS (Core Meltdown Progression Accident Simulation Software). SPACE is responsible for the description of fluid state in nuclear system nodes, while COMPASS is responsible for the prediction of thermal and mechanical responses of core fuels and reactor vessel heat structures. New heat transfer models to each phase of the fluid, flow blockage, corium behavior in the lower head are added to COMPASS. Then, an interface module for the data transfer between two codes was developed to enable coupling. An implicit coupling scheme of wall heat transfer was applied to prevent fluid temperature oscillation. To validate the performance of newly developed code CSPACE, we analyzed typical severe accident scenarios for OPR1000 (Optimized Power Reactor 1000), which were initiated from large break loss of coolant accident, small break loss of coolant accident, and station black out accident. The results including thermal hydraulic behavior of RCS, core damage progression, hydrogen generation, corium behavior in the lower head, reactor vessel failure were reasonable and consistent. We demonstrate that CSPACE provides a good platform for the prediction of severe accident progression by detailed review of analysis results and a qualitative comparison with the results of previous MELCOR analysis.

An Investigation of Downcomer Boiling Effects During Reflood Phase Using TRAC-M Code

  • Chon Woo Chong;Lee Jae Hoon;Lee Sang Jong
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1182-1193
    • /
    • 2005
  • The capability of TRAC-M code to predict downcomer boiling effect during reflood phase in postulated PWR LOCA is evaluated using the results of downcomer effective water head and Cylindrical Core Test Facility (CCTF) experiments, which were performed at JAERI. With a full height downcomer simulator, effective water head experiment was carried out to investigate the applicability of the TRAC-M best estimate LOCA code to evaluate the effective water head with superheated wall temperature in downcomer. In order to clarify the effect of the initial superheat of the downcomer wall on the system and the core cooling behaviors during the reflood phase, two sets of analysis were also performed with a CCTF. Results show that TRAC­M code tends to under-predict downcomer effective water head and core differential pressure. However, the code results show a good agreement with the experimental results in downcomer temperature, heat flux and pressure. Finally, both experiment and calculation showed that the downcomer water head with the superheated downcomer wall is lower than that of the saturated wall temperature.

COMPASS - New modeling and simulation approach to PWR in-vessel accident progression

  • Podowski, Michael Z.;Podowski, Raf M.;Kim, Dong Ha;Bae, Jun Ho;Son, Dong Gun
    • Nuclear Engineering and Technology
    • /
    • 제51권8호
    • /
    • pp.1916-1938
    • /
    • 2019
  • The objective of this paper is to discuss the modeling principles of phenomena governing core degradation/melting and in-vessel melt relocation during severe accidents in light water reactors. The proposed modeling approach has been applied in the development of a new accident simulation package, COMPASS (COre Meltdown Progression Accident Simulation Software). COMPASS can be used either as a stand-alone tool to simulate in-vessel meltdown progression up to and including RPV failure, or as a component of an integrated simulation package being developed in Korea for the APR1400 reactor. Interestingly, since the emphasis in the development of COMPASS modeling framework has been on capturing generic mechanistic aspects of accident progression in light water reactors, several parts of the overall model should be useful for future accident studies of other reactor designs, both PWRs and BWRs. The issues discussed in the paper include the overall structure of the model, the rationale behind the formulation of the governing equations and the associated simplifying assumptions, as well as the methodology used to verify both the physical and numerical consistencies of the overall solver. Furthermore, the results of COMPASS validation against two experimental data sets (CORA and PHEBUS) are shown, as well as of the predicted accident progression at TMI-2 reactor.

SIMULATION OF CORE MELT POOL FORMATION IN A REACTOR PRESSURE VESSEL LOWER HEAD USING AN EFFECTIVE CONVECTIVITY MODEL

  • Tran, Chi-Thanh;Dinh, Truc-Nam
    • Nuclear Engineering and Technology
    • /
    • 제41권7호
    • /
    • pp.929-944
    • /
    • 2009
  • The present study is concerned with the extension of the Effective Convectivity Model (ECM) to the phase-change problem to simulate the dynamics of the melt pool formation in a Light Water Reactor (LWR) lower plenum during hypothetical severe accident progression. The ECM uses heat transfer characteristic velocities to describe turbulent natural convection of a melt pool. The simple approach of the ECM method allows implementing different models of the characteristic velocity in a mushy zone for non-eutectic mixtures. The Phase-change ECM (PECM) was examined using three models of the characteristic velocities in a mushy zone and its performance was compared. The PECM was validated using a dual-tier approach, namely validations against existing experimental data (the SIMECO experiment) and validations against results obtained from Computational Fluid Dynamics (CFD) simulations. The results predicted by the PECM implementing the linear dependency of mushy-zone characteristic velocity on fluid fraction are well agreed with the experimental correlation and CFD simulation results. The PECM was applied to simulation of melt pool formation heat transfer in a Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) lower plenum. The study suggests that the PECM is an adequate and effective tool to compute the dynamics of core melt pool formation.

ROSA/LSTF Test and RELAP5 Analyses on PWR Cold Leg Small-Break LOCA with Accident Management Measure and PKL Counterpart Test

  • Takeda, Takeshi;Ohtsu, Iwao
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.928-940
    • /
    • 2017
  • An experiment using the $Prim{\ddot{a}}rkreisl{\ddot{a}}ufe$ Versuchsanlage (PKL) was performed for the OECD/NEA PKL-3 Project as a counterpart to a previous test with the large-scale test facility (LSTF) on a cold leg smallbreak loss-of-coolant accident with an accident management (AM) measure in a pressurized water reactor. Concerning the AM measure, the rate of steam generator (SG) secondary-side depressurization was controlled to achieve a primary depressurization rate of 200 K/h as a common test condition; however, the onset timings of the SG depressurization were different from each other. In both tests, rapid recovery started in the core collapsed liquid level after loop seal clearing, which caused whole core quench. Some discrepancies appeared between the LSTF and PKL test results for the core collapsed liquid level, the cladding surface temperature, and the primary pressure. The RELAP5/MOD3.3 code predicted the overall trends of the major thermal-hydraulic responses observed in the LSTF test well, and indicated a remaining problem in the prediction of primary coolant distribution. Results of uncertainty analysis for the LSTF test clarified the influences of the combination of multiple uncertain parameters on peak cladding temperature within the defined uncertain ranges.

Uncertainty quantification in decay heat calculation of spent nuclear fuel by STREAM/RAST-K

  • Jang, Jaerim;Kong, Chidong;Ebiwonjumi, Bamidele;Cherezov, Alexey;Jo, Yunki;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.2803-2815
    • /
    • 2021
  • This paper addresses the uncertainty quantification and sensitivity analysis of a depleted light-water fuel assembly of the Turkey Point-3 benchmark. The uncertainty of the fuel assembly decay heat and isotopic densities is quantified with respect to three different groups of diverse parameters: nuclear data, assembly design, and reactor core operation. The uncertainty propagation is conducted using a two-step analysis code system comprising the lattice code STREAM, nodal code RAST-K, and spent nuclear fuel module SNF through the random sampling of microscopic cross-sections, fuel rod sizes, number densities, reactor core total power, and temperature distributions. Overall, the statistical analysis of the calculated samples demonstrates that the decay heat uncertainty decreases with the cooling time. The nuclear data and assembly design parameters are proven to be the largest contributors to the decay heat uncertainty, whereas the reactor core power and inlet coolant temperature have a minor effect. The majority of the decay heat uncertainties are delivered by a small number of isotopes such as 241Am, 137Ba, 244Cm, 238Pu, and 90Y.

On the validation of ATHLET 3-D features for the simulation of multidimensional flows in horizontal geometries under single-phase subcooled conditions

  • Diaz-Pescador, E.;Schafer, F.;Kliem, S.
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3567-3579
    • /
    • 2022
  • This paper provides an assessment of fluid transport and mixing processes inside the primary circuit of the test facility ROCOM through the numerical simulation of Test 2.1 with the system code ATHLET. The experiment represents an asymmetric injection of cold and non-borated water into the reactor coolant system (RCS) of a pressurized water reactor (PWR) to restore core cooling, an emergency procedure which may subsequently trigger a core re-criticality. The injection takes place at low velocity under single-phase subcooled conditions and presents a major challenge for the simulation in lumped parameter codes, due to multidimensional effects in horizontal piping and vessel arising from density gradients and gravity forces. Aiming at further validating ATHLET 3-D capabilities against horizontal geometries, the experiment conditions are applied to a ROCOM model, which includes a newly developed horizontal pipe object to enhance code prediction inside coolant loops. The obtained results show code strong simulation capabilities to represent multidimensional flows. Enhanced prediction is observed at the vessel inlet compared to traditional 1-D approach, whereas mixing overprediction from the descending denser plume is observed at the upper-half downcomer region, which leads to eventual deviations at the core inlet.

가압경수로 부분충수 운전중 잔열제거 (RHR)계통 상실시 가압기 통로를 통한 배출유로 특성 분석 (Analysis of the Vent Path Through the Pressurizer Manway Under the Loss of Residual Heat Removal(RHR) System During Mid-Loop Operation in PWR)

  • 하귀석;김원석;장원표;류건중
    • Nuclear Engineering and Technology
    • /
    • 제27권6호
    • /
    • pp.859-869
    • /
    • 1995
  • 본 연구는 가압경수로의 부분충수 운전중 잔열제거기능 상실사고 해석시 신뢰성을 확보하기 위해 RELAP5/MOD3.1 코드로 관련 대형 실험을 모의 계산하여, 사고시 예상되는 주요 물리적 현상의 파악과 코드의 예측능력을 평가하는 것이다. 대상 실험으로 선택된 BETHSY Test 6.9a는 이 사고중 증기발생기가 작동하지 않고, 가압기 Manway를 개방한 상태 (Configuration)를 모의한 실험이다. 이 연구 결과는 실제 원전 사고시 예상되는 중요 현상 뿐 아니라, 이에 영향을 미치는 민감한 인자를 파악하여 사고 해석결과의 유효성을 판단하는 데 상당히 기여할 것으로 기대한다. 연구결과 RELAP5/MOD3.1 코드는 대체적으로 계통의 과도기 거동은 타당하게 예측하고 있지만, 모의계산에서 Time-Step이 아주 짧아 막대한 시간이 소요된다는 문제점이 발견되었다. 그 외에도 노심팽창수위 (swollen level)를 과대평가하여 가압기의 수위 및 계통의 압력을 높게 계산하였다. 이로 인해 가압기를 통한 방출량도 과대계산하여 노심노출을 약 400초 빨리 예측하였다. 실험과 코드 예측결과를 종합할 때 가압기 Manway 만의 개방으로는 계통압력이 상승하고, 중력주입냉각수로는 노심수위 회복에 불충분하며, 결국 강제주입에 의해서 노심수위가 회복될 수 있음이 입증되었다.

  • PDF

Parallelization and application of SACOS for whole core thermal-hydraulic analysis

  • Gui, Minyang;Tian, Wenxi;Wu, Di;Chen, Ronghua;Wang, Mingjun;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3902-3909
    • /
    • 2021
  • SACOS series of subchannel analysis codes have been developed by XJTU-NuTheL for many years and are being used for the thermal-hydraulic safety analysis of various reactor cores. To achieve fine whole core pin-level analysis, the input preprocessing and parallel capabilities of the code have been developed in this study. Preprocessing is suitable for modeling rectangular and hexagonal assemblies with less error-prone input; parallelization is established based on the domain decomposition method with the hybrid of MPI and OpenMP. For domain decomposition, a more flexible method has been proposed which can determine the appropriate task division of the core domain according to the number of processors of the server. By performing the calculation time evaluation for the several PWR assembly problems, the code parallelization has been successfully verified with different number of processors. Subsequent analysis results for rectangular- and hexagonal-assembly core imply that the code can be used to model and perform pin-level core safety analysis with acceptable computational efficiency.