• 제목/요약/키워드: PWR core

검색결과 175건 처리시간 0.018초

Design and analysis of RIF scheme to improve the CFD efficiency of rod-type PWR core

  • Chen, Guangliang;Qian, Hao;Li, Lei;Yu, Yang;Zhang, Zhijian;Tian, Zhaofei;Li, Xiaochang
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3171-3181
    • /
    • 2021
  • This research serves to advance the development of engineering computational fluid dynamics (CFD) computing efficiency for the analysis of pressurized water reactor (PWR) core using rod-type fuel assemblies with mixing vanes (one kind of typical PWR core). In this research, a CFD scheme based on the reconstruction of the initial fine flow field (RIF CFD scheme) is proposed and analyzed. The RIF scheme is based on the quantitative regulation of flow velocities in the rod-type PWR core and the principle that the CFD computing efficiency can be improved greatly by a perfect initialization. In this paper, it is discovered that the RIF scheme can significantly improve the computing efficiency of the CFD computation for the rod-type PWR core. Furthermore, the RIF scheme also can reduce the computing resources needed for effective data storage of the large fluid domain in a rod-type PWR core. Moreover, a flow-ranking RIF CFD scheme is also designed based on the ranking of the flow rate, which enhances the utilization of the flow field with a closed flow rate to reconstruct the fine flow field. The flow-ranking RIF CFD scheme also proved to be very effective in improving the CFD efficiency for the rod-type PWR core.

Design of the flexible switching controller for small PWR core power control with the multi-model

  • Zeng, Wenjie;Jiang, Qingfeng;Du, Shangmian;Hui, Tianyu;Liu, Yinuo;Li, Sha
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.851-859
    • /
    • 2021
  • Small PWR can be used for power generation and heating. Considering that small PWR has the characteristics of flexible operating conditions and complex operating environment, the controller designed based on single power level is difficult to achieve the ideal control of small PWR in the whole range of core power range. To solve this problem, a flexible switching controller based on fuzzy controller and LQG/LTR controller is designed. Firstly, a core fuzzy multi-model suitable for full power range is established. Then, T-S fuzzy rules are designed to realize the flexible switching between fuzzy controller and LQG/LTR controller. Finally, based on the core power feedback principle, the core flexible switching control system of small PWR is established and simulated. The results show that the flexible switching controller can effectively control the core power of small PWR and the control effect has the advantages of both fuzzy controller and LQG/LTR controller.

Development and verification of PWR core transient coupling calculation software

  • Li, Zhigang;An, Ping;Zhao, Wenbo;Liu, Wei;He, Tao;Lu, Wei;Li, Qing
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3653-3664
    • /
    • 2021
  • In PWR three-dimensional transient coupling calculation software CORCA-K, the nodal Green's function method and diagonal implicit Runge Kutta method are used to solve the spatiotemporal neutron dynamic diffusion equation, and the single-phase closed channel model and one-dimensional cylindrical heat conduction transient model are used to calculate the coolant temperature and fuel temperature. The LMW, NEACRP and PWR MOX/UO2 benchmarks and FangJiaShan (FJS) nuclear power plant (NPP) transient control rod move cases are used to verify the CORCA-K. The effects of burnup, fuel effective temperature and ejection rate on the control rod ejection process of PWR are analyzed. The conclusions are as follows: (1) core relative power and fuel Doppler temperature are in good agreement with the results of benchmark and ADPRES, and the deviation between with the reference results is within 3.0% in LMW and NEACRP benchmarks; 2) the variation trend of FJS NPP core transient parameters is consistent with the results of SMART and ADPRES. And the core relative power is in better agreement with the SMART when weighting coefficient is 0.7. Compared with SMART, the maximum deviation is -5.08% in the rod ejection condition and while -5.09% in the control rod complex movement condition.

PWR에서 Core Support Barrel의 진동 (Vibrations of the Core Support Barrel in PWR)

  • 이병호;김유만
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1991년도 춘계학술대회논문집; 한국해사기술연구소, 대전; 1 Jun. 1991
    • /
    • pp.163-166
    • /
    • 1991
  • 현재 PWR의 동력로의 값은 대당 10억불이나 되는데, 원래 20년 수명을 예 측하고 설계된 것이나, 이를 두 배로 늘려서 40년이 수명을 가질 수 있겠는 가 하는 문제가 크게 대두되었다. 본 연구는 가장 중요한 구조물인 로심부 지지통의 수명판정조건을 제시하기 위하여 계산한 일부이다. 수명판정을 하 기 위해서는 barrel의 강제진동 응답으로부터 fluctuating stress를 구해야만 한다. 본 연구에서는 modal analysis를 이용하여 변위를 모드함수의 급수전 개의 형태로 표시하고 가진주파수가 barrel의 고유진동수와 일치하는 모드만 을 택하여 fluctuation stress를 구하였다.

  • PDF

State-Space Model Predictive Control Method for Core Power Control in Pressurized Water Reactor Nuclear Power Stations

  • Wang, Guoxu;Wu, Jie;Zeng, Bifan;Xu, Zhibin;Wu, Wanqiang;Ma, Xiaoqian
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.134-140
    • /
    • 2017
  • A well-performed core power control to track load changes is crucial in pressurized water reactor (PWR) nuclear power stations. It is challenging to keep the core power stable at the desired value within acceptable error bands for the safety demands of the PWR due to the sensitivity of nuclear reactors. In this paper, a state-space model predictive control (MPC) method was applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, the MPC model, and quadratic programming (QP). The mathematical models of the reactor core were based on neutron dynamic models, thermal hydraulic models, and reactivity models. The MPC model was presented in state-space model form, and QP was introduced for optimization solution under system constraints. Simulations of the proposed state-space MPC control system in PWR were designed for control performance analysis, and the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

경수로심의 제논진동 해석 (PWR Core Stability Against Xenon-Induced Spatial Power Oscillation)

  • Ho Ju Moon;Ki In Han
    • Nuclear Engineering and Technology
    • /
    • 제14권2호
    • /
    • pp.51-63
    • /
    • 1982
  • 한국에너지연구소에서 개발한 1차원적 제논과도현상해석 코드 DD1D를 사용하여 가압경수로심의 축방향 제논진동에 대한 안정성을 조사하였다. 노심의 출력준위, 감속재온도계수, 노심 입구온도, 도플러출력 계수 그리고 연소도의 변화가 노심의 축방향 안정성에 미치는 효과를 조사하기 위하여 고리1호기의 설계 및 운전자료를 이용하였으며 본 민감도 분석을 통하여 고리 1호기의 노심은 주기 초에는 축방향 제논진동에 대하여 안정하나 연소도가 증가함에 따라 안정도가 차츰 감소하여 주기 말에는 불안정해진다는 것을 알았다. 이같이 연소도가 증가함에 따라 노심의 안정도가 감소하는 이유는 연소도 변화에 따라 축방향의 출력분포, 감속재온도 계수 및 도플러출력계수가 변하기 때문이다. 본 연구를 통하여 출력밀도가 높은 대형 가압 경수로의 경우 전 주기동안 축방향제논진동에 대하여 안정된 노심을 설계하기 힘들다는 결론에 도달하였다.

  • PDF

Verification and validation of STREAM/RAST-K for PWR analysis

  • Choe, Jiwon;Choi, Sooyoung;Zhang, Peng;Park, Jinsu;Kim, Wonkyeong;Shin, Ho Cheol;Lee, Hwan Soo;Jung, Ji-Eun;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.356-368
    • /
    • 2019
  • This paper presents the verification and validation (V&V) of the STREAM/RAST-K 2.0 code system for a pressurized water reactor (PWR) analysis. A lattice physics code STREAM and a nodal diffusion code RAST-K 2.0 have been developed by a computational reactor physics and experiment laboratory (CORE) of Ulsan National Institute of Science and Technology (UNIST) for an accurate two-step PWR analysis. The calculation modules of each code were already verified against various benchmark problems, whereas this paper focuses on the V&V of linked code system. Three PWR type reactor cores, OPR-1000, three-loop Westinghouse reactor core, and APR-1400, are selected as V&V target plants. This code system, for verification, is compared against the conventional code systems used for the calculations in nuclear design reports (NDRs) and validated against measured plant data. Compared parameters are as follows: critical boron concentration (CBC), axial shape index (ASI), assembly-wise power distribution, burnup distribution and peaking factors. STREAM/RAST-K 2.0 shows the RMS error of critical boron concentration within 20 ppm, and the RMS error of assembly power within 1.34% for all the cycles of all reactors.

Verification of neutronics and thermal-hydraulic coupled system with pin-by-pin calculation for PWR core

  • Zhigang Li;Junjie Pan;Bangyang Xia;Shenglong Qiang;Wei Lu;Qing Li
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3213-3228
    • /
    • 2023
  • As an important part of the digital reactor, the pin-by-pin wise fine coupling calculation is a research hotspot in the field of nuclear engineering in recent years. It provides more precise and realistic simulation results for reactor design, operation and safety evaluation. CORCA-K a nodal code is redeveloped as a robust pin-by-pin wise neutronics and thermal-hydraulic coupled calculation code for pressurized water reactor (PWR) core. The nodal green's function method (NGFM) is used to solve the three-dimensional space-time neutron dynamics equation, and the single-phase single channel model and one-dimensional heat conduction model are used to solve the fluid field and fuel temperature field. The mesh scale of reactor core simulation is raised from the nodal-wise to the pin-wise. It is verified by two benchmarks: NEACRP 3D PWR and PWR MOX/UO2. The results show that: 1) the pin-by-pin wise coupling calculation system has good accuracy and can accurately simulate the key parameters in steady-state and transient coupling conditions, which is in good agreement with the reference results; 2) Compared with the nodal-wise coupling calculation, the pin-by-pin wise coupling calculation improves the fuel peak temperature, the range of power distribution is expanded, and the lower limit is reduced more.

가압경수로의 노심내 핵연료관리용 탐색도구의 개발 (Development of In-Core Fuel Management Scoping Tools for PWR)

  • Kim, Chang-Hyo;Kim, Teak-Kyum
    • Nuclear Engineering and Technology
    • /
    • 제25권1호
    • /
    • pp.20-27
    • /
    • 1993
  • 이 논문은 가압경수로의 노심내 핵연료 관리용 탐색코드를 개발하기 위한 것이다. 이 목적으로 점반응도모형을 사용하여 핵연료주기 결정을 위한 FCYPRM코드를 제작하였고, 수정형 Borresen의 소격확산모형과 노달전개법에 의한 중성자 공간 해석용 CMSNAP코드를 개발하였다. 또한 수치 실험을 통하여 일련의 경험칙을 수립하고 이들을 이용하여 재장전노심 핵연료집합체 배치코드로서 ALPS코드를 개발하였다. 수치계산결과를 예시함으로서 개개 코드들의 유용성과 응용성을 입증하였으며, 이들 코드들을 가압경수로의 재장전노심 설계문제를 해결하기 위한 코드로 합성, 응용함으로서 상기 코드들이 효과적인 탐색코드가 될 수 있음을 보였다.

  • PDF

Uncertainty quantification of the power control system of a small PWR with coolant temperature perturbation

  • Li, Xiaoyu;Li, Chuhao;Hu, Yang;Yu, Yongqi;Zeng, Wenjie;Wu, Haibiao
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2048-2054
    • /
    • 2022
  • The coolant temperature feedback coefficient is an important parameter of reactor core power control system. To study the coolant temperature feedback coefficient influence on the core power control system of small PWR, the core power control system is built with the nonlinear model and fuzzy control theory. Then, the uncertainty quantification method of reactor core parameters is established based on the Latin hypercube sampling method and the Bootstrap method. Finally, under the conditions of reactivity step perturbation and coolant inlet temperature step perturbation, uncertainty analysis for two cases is carried out. The result shows that with fuzzy controller and fuzzy PID controller, the uncertainty of the coolant temperature feedback coefficient affects the core power control system, and the maximum uncertainties of core relative power, coolant temperature deviation, fuel temperature deviation and total reactivity are acceptable.