• Title/Summary/Keyword: PWM drive(폭변조 구동)

Search Result 12, Processing Time 0.02 seconds

A Study on Design and Development of the Electronically Controlled Power Steering Controller far a Passenger Car (승용차용 전자계어식 파워스티어링 콘트롤러의 설계 및 개발에 관한 연구)

  • 김광열;김태훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.166-174
    • /
    • 2002
  • Power steering systems far automobile are becoming ever more popular because they reduce steering efforts of the drivers, especially during parking lot maneuver. In this paper, the controller of the motor driven hydraulic power steering(MDHPS) has been designed and developed. This system uses a power source of DC motor instead of engine power source for power steering drive oil pump. The developed MDHPS system is accomplished a highly sensitive power steering resulted from electronic control under variable driving condition. Furthermore, this system is more improvement than type of engine driving far fuel economy.

Phase-Shift Full-Bridge DC-DC Converter using the One-Chip Micom (단일칩 마이컴을 이용한 위상변위 방식 풀브리지 직류-직류 전력변환기)

  • Jeong, Gang-Youl
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.517-527
    • /
    • 2021
  • This paper presents the phase-shift full-bridge DC-DC converter using the one-chip micom. The proposed converter primary is the full-bridge power topology that operates with the unipolar pulse-width modulation (PWM) by the phase-shift method, and the secondary is the full-bridge full-wave rectifier composed of four diodes. The control of proposed converter is performed by the one-chip micom and its MOSFET switches are driven by the bootstrap circuit. Thus the total system of proposed converter is simple. The proposed converter achieves high-efficiency using the resonant circuit and blocking capacitor. In this paper, first, the power-circuit operation of proposed converter is explained according to each operation mode. And the power-circuit design method of proposed converter is shown, and the software control algorithm on the micom and the feedback and switch drive circuits operating the proposed converter are described, briefly. Then, the operation characteristics of proposed converter are validated through the experimental results of a designed and implemented prototype converter by the shown design and implementation method in this paper. The highest efficiency in the results was about 92%.