• Title/Summary/Keyword: PWM 제어

Search Result 1,418, Processing Time 0.031 seconds

Sinusoidal Current Control of Single-Phase PWM Converters under Voltage Source Distortion Using Composite Observer (왜곡된 전원 전압하에서 Composite 관측기를 이용한단상 PWM 컨버터의 정현파 전류 제어)

  • Nguyen, Thanh Hai;Lee, Dong-Choon;Lee, Suk-Gyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.466-476
    • /
    • 2011
  • In this paper, a high-performance current control for the single-phase PWM converter under distorted source voltages is proposed using a composite observer. By applying the composite observer, the fundamental and high-order harmonic components of the source voltage and current are extracted without a delay. The extracted fundamental component is used for a phase-lock loop (PLL) system to detect the phase angle of the source voltage. A multi-PR (proportional-resonant) controller is employed to regulate the single-phase line current. The high-order harmonic components of the line current are easily eliminated, resulting in the sinusoidal line current. The simulation and experimental results have verified the validity of the proposed method.

Design and Implementation of Oil Pump Control Systems Driven by a Brushless DC Electric Motor (BLDC 모터로 구동되는 오일 펌프 제어 시스템의 설계 및 구현)

  • Kwak, Seong-Woo;Kim, Hyung-Soo;Yang, Jung-Min
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.83-90
    • /
    • 2014
  • In this paper, we address the problem of designing and implementing an oil pump control system driven by a brushless DC (BLDC) motor. The proposed oil pump plays the role of providing fuel to the engine clutch and transmission of hybrid vehicles. Main consideration is given to enhancing response feature and accuracy of the oil pump by simplifying the controller that is driven by a BLDC motor under PWM voltage control, which is a standard control method for BLDC motors. The proposed control scheme also helps to increase efficiency and reliability of the oil pump system. To validate the performance of the proposed system, we conduct experiments on BLDC motor speed control and oil pump operations.

A study on the power factor improvement of the Boost Forward Converter (BF 컨버터의 역률 개선에 관한 연구)

  • 임승하
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.56-63
    • /
    • 1999
  • In this paper, we realize the active PFC(Power Factor Correction) system of BF (Boost Forward) converter with PWM-PFM control technique to control DC output voltage, and to control the input current with sinusoidal wave synchronized by the converter and inverter using power switching element, FET and IGBT. The control circuit of the suggested Boost converter is implemented with a microprocessor 80C196. After making the ratio of output voltage to current as 50V/1A and the duty ratio greater than 0.5. When input voltage is 30V and boost inductance is 1.1mH. We control the voltage changing rate according to the variation of load resistance using a PWM-PFM control technique. And finally we prove experimentally. PF can be improved up to 0.96 using the current shaping technique.

  • PDF

A Study on the Leading Edge Modulation Buck converter Operating in Discontinuous Conduction Mode (전류 불연속 모드로 동작하는 벅 컨버터의 새로운 PWM 제어 방식에 관한 연구)

  • Lee, Jae-Sam;Son, Ho-In;Cho, Hoon-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.241-247
    • /
    • 2007
  • This paper presents a new Leading edge modulation Buck converter operating in discontinuous conduction mode (DCM) for the pulse voltage input. In the slave output of the LLC half-bridge multi-resonant converter, to regulate the direct chopper's output voltage, its PWM switch is controlled by the leading edge modulation. The principles of this proposed LEM control method and the fast dynamics in inductor current based on the converter impulse response are studied. The theoretical results are verified through an experimental prototype of the 100W 60inch PDP Address power module.

PWM Inverter System Control for Flywheel Energy Storage System using PDFF(Pseudo-Derivative Control with Feedforward Gain) Algorithm (PDFF 기법을 적용한 플라이휠 에너지 저장장치용 PWM 인버터 시스템 제어)

  • Park, Jong-Chan;Jeong, Byung-Hwan;Choi, Hee-Ryong;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.267-275
    • /
    • 2007
  • This paper presents about energy input and output modeling for a flywheel energy storage system that can store and supply mechanical energy, which is emerging as one of clean energy sources, and the analysis and control of a PWM inverter system. Moreover, this paper describes flywheel's characteristics related to variations of mechanical and electrical parameters like as voltage and current versus speed characteristics formed as numerical formula and thus simulate behaviour-status of flywheel energy. Also for comparison and analysis between PI control and PDFF control, the modeling, design and analysis to the single-phase full bridge inverter with double loop feedback control is accomplished through numerical description and simulation. Finally, under load condition 0.1[pu], 1[pu]. it is validated that harmonic characteristics for voltage and current wave is controlled within 5% below even dynamics condition.

1kW Photovoltaic Converter with High Frequency Transformer (1kW급 태양광발전용 고주파링크 방식의 컨버터)

  • Yu, B.G.;Lee, K.O.;Yu, G.J.;Choi, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1087-1088
    • /
    • 2008
  • 계통연계형 태양광발전 시스템을 구성하고 있는 전력변환 장치인 PCS(power conditioning system)은 성능, 효율, 가격, 그리고 보호 및 협조 문제에 따라 여러 가지 형태가 있다. 본 논문에서는 고주파 변압기를 이용한 컨버터에 대하여 제안한다. 이 시스템은 FB(full bridge) 컨버터, 고주파 변압기, 다이오드 정류기, DC link 필터, PWM 인버터 그리고 저역통과필터로 이루어져 있다. 고주파 변압기를 이용한 컨버터의 스위칭 주파수는 10kHz로 Uniploar PWM 방식을 이용하였고, 변압기의 2차단에 다이오드 정류기와 커패시터를 통하여 DC로 정류한다. 고주파 변압기를 이용한 컨버터의 제어는 전압형 전류제어로 MPPT 알고리즘에 의한 입력전류제어를 담당하고, DC link 전압의 제어는 Unipolar PWM 인버터에서 제어를 담당한다. 논문에서는 고주파 변압기를 이용한 FB Conveter의 제어 방법에 대하여 시뮬레이션을 통하여 검증하고자 한다.

  • PDF

Synchronous PWM Control Method of Interior Permanent Magnet Synchronous Motor for Railway Vehicles with Low Switching Frequency (낮은 스위칭 주파수로 구동되는 철도차량용 매입형 영구자석 동기전동기의 동기 PWM 제어 방법)

  • Park, Seung-Chan;Jeon, Eun-Tak;Jo, Woong;Park, Jin-ho;Eom, Jung-sup;Lee, Chang-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.417-418
    • /
    • 2020
  • 효율 및 내환경성에서 우수한 성능을 갖는 매입형 영구자석 동기전동기(IPMSM, Interior Permanent Magnet Synchronous Motor)는 최근 철도차량용 견인전동기로서 주목받고 있다. 일반 도시 철도차량의 추진제어시스템은 장시간 연속 운행 및 자연통풍냉각 방식의 설계가 요구되므로 대전력 스위칭으로 인한 발열 문제가 고려된 낮은 스위칭 주파수 및 6-스텝 제어 아래 인버터의 고성능 제어가 필요하다. 따라서 본 논문에서는 6-스텝 및 낮은 스위칭 주파수로 IPMSM을 제어하기 위한 PWM(Pulse Width Modulation) 동기화 방법을 기술하고 시뮬레이션을 통하여 제어 성능을 검증하였다.

  • PDF

Photovoltaic Generation System Control Using Space Vector PWM Method (공간벡터 PWM 방식을 이용한 태양광 발전 시스템 제어)

  • Cho, Moon-Taek;Choi, Hae-Gill;Lee, Chung-Sik;Baek, Jong-Mu
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.3
    • /
    • pp.31-37
    • /
    • 2010
  • In this paper, a photovoltaic system is designed with PWM(Pulse Width Modulation) voltage source inverter. Proposed synchronous signal and control signal was processed by 56F8323 microprocessor for stable modulation. The PWM voltage source inverter using inverter consists of complex type of electric power converter to compensate for the defect, that is solar cell cannot be developed continuously by connecting with the source of electric power for ordinary use. It can cause the effect of saving electric power, from 10 to 20[%]. The PWM voltage source inverter operates in situation that its output voltage is in same phase with the utility voltage. In addition, I connected extra power to the system through operation the system voltage and inverter power in a synchronized way by extracting the system voltage so that the phase of the system and PWM voltage inverter can be synchronized. In the system of this research showed good results after being controlled in order to provide stable power to the load and the system through maintaining and low output power of harmonics.

Carrier Comparison PWM for Voltage Control of Vienna Rectifier (비엔나 정류기의 전압제어를 위한 반송파 비교 PWM)

  • Yoon, Byung-Chul;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4561-4568
    • /
    • 2011
  • In this paper, carrier comparison PWM method for voltage control of Vienna rectifier is discussed. In general, in industrial and communications applications, the two-level rectifier is used. However, this two-level rectifier has the limit of high THD and low efficiency. So, the studies of three-level rectifier has been carried out so far, and the Vienna rectifier circuit is the representative. The space vector pulse width modulation(SVPWM) method is generally used for Vienna rectifier, in which voltage vectors and duration time are calculated from the voltage reference. However, this method require very sophisticated and complex calculations, so realizing this method by software is very difficult. To overcome this disadvantage, simple carrier comparison PWM method for Vienna rectifier is proposed which is modified from the carrier comparison method for 3 level inverter. Furthermore, to verify the usefulness of the Vienna rectifier carrier comparison PWM the simulation and experiment are carried out.

The Reactive Power Compensation for a Feeder by Control of the Power Factor of PWM Converter Trains (PWM 컨버터 차량의 역률 제어를 통한 급전선로의 무효전력 보상)

  • Kim, Ronny Yongho;Kim, Baik
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.3
    • /
    • pp.171-177
    • /
    • 2014
  • PWM converter trains exhibit excellent load characteristics in comparison with conventional phase-controlled trains with low power factors, as they can be operated at power factors which are close to unity by means of a voltage vector control method. However, in the case of a high track density or extended feeding, significant line losses and voltage drops can occur. Instead of operating these trains at a fixed unity power factor, this paper suggests a continuous optimal power factor control scheme for each train in an effort to minimize line losses and improve voltage drops according to varying load conditions. The proposed method utilizes the steepest descent algorithm targeting each car in the same feeding section to establish the optimized reactive power compensation levels that can minimize the reactive power loss of the feeder. The results from a simulation of a sample system show that voltage drops can be improved and line losses decreased.