• Title/Summary/Keyword: PWM (Pulse Width Modulation)

Search Result 717, Processing Time 0.02 seconds

Analysis of Pulse Width Modulation Schemes for Electric Vehicle Power Converters (전기차용 전력변환장치의 펄스 폭 변조 기법 분석)

  • Quach, Ngoc-Thinh;Chae, Sang Heon;Kim, Eel-Hwan;Yang, Seung-Yong;Boo, Chang-Jin;Kim, Ho-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2225-2231
    • /
    • 2016
  • In order to overcome the problem of fossil fuel energy, electric vehicle (EV) has been used in recent years. The important issues of EV are driving distance and lifetime related to EV efficiency. A voltage source converter is one of the main components of EV which can be operated with various pulse width modulation (PWM) schemes such as continuous PWM schemes and discontinuous PWM schemes. These PWM schemes will cause the effects on the efficiency of converter system and the lifetime of EV. Therefore, this paper proposes an analysis of the PWM schemes for the power converter on the EV. The objective is to find out a best solution for the EV by comparing the total harmonic distortion (THD) and transient response between the various PWM schemes. The operation of traction motor on the EV with the PWM schemes will be verified by using Psim simulation program.

Sliding Mode Control for Attitude Tracking of Thruster-Controlled Spacecraft

  • Cheon, Yee-Jin
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.257-261
    • /
    • 2001
  • Nonlinear pulse width modulation (PWM) controlled system is considered to achieve control performance of thruster controlled spacecraft. The actual PWM controlled motions occur, very closely, around the average model trajectory. Furthermore nonlinear PWM controller design can be directly applied to thruster controlled spacecraft to determine thruster on-time. Sliding mode control for attitude tracking of three-axis thruster-controlled spacecraft is presented. Simulation results are shown which use modified Rodrigues parameters and sliding mode control law to achieve attitude tracking of a three-axis spacecraft with thrusters.

  • PDF

Improved Phase-shift Pulse-width Modulation Full-bridge Converter using a Blocking Capacitor (블로킹커패시터를 이용한 향상된 위상천이 펄스폭변조 풀브리지 컨버터)

  • Jeong, Gang-Youl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.20-29
    • /
    • 2011
  • This paper presents an improved phase-shift pulse-width modulation (PWM) full-bridge converter using a blocking capacitor. As the proposed converter reduces the circulation energy by inserting only one series blocking capacitor at the primary side of the conventional phase-shift PWM full-bridge converter structure, it improves the operation characteristics of the conventional converter. In this paper, first, the operation of conventional phase-shift PWM full-bridge converter is roughly reviewed, and then the operational principle of the proposed converter is classified and explained by each mode. After that, a prototype design example based on the operational principle is shown. Then, the improved operation characteristics of the proposed converter are actually verified through the experimental results.

Voltage Source Inverter Drive Using Error-compensated Pulse Width Modulation

  • Chen, Keng-Yuan;Hu, Jwu-Sheng;Lin, Jau-Nan
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.388-397
    • /
    • 2016
  • An error-compensated pulse width modulator (ECPWM) is proposed to improve the baseband harmonic performance and the switching loss of voltage source inverters (VSIs). Selecting between harmonic distortion and switching loss is a design tradeoff in the conventional space vector pulse width modulation. In this work, an accumulated difference in produced and desired phase voltages is considered to adjust the reference signal. This mechanism can compensate for the voltage error in the previous carrier period. With error compensation every half-carrier period, the proposed ECPWM allows one-half reduction in carrier frequency without scarifying baseband harmonic distortion. The proposed modulator is applied to a three-phase VSI with R-L load and a motor-speed-control system for experiments. The measured efficiency and operating temperature of switches confirm the effectiveness of the proposed scheme.

Performance Evaluation of Various Bus Clamped Space Vector Pulse Width Modulation Techniques

  • Nair, Meenu D.;Biswas, Jayanta;Vivek, G.;Barai, Mukti
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1244-1255
    • /
    • 2017
  • The space vector pulse width modulation (SVPWM) technique is a popular PWM method for medium voltage drive applications. Conventional SVPWM (CSVPWM) and bus clamped SVPWM (BCSVPWM) are the most common SVPWM techniques. This paper evaluates the performance of various advanced BCSVPWM strategies in terms of their harmonic distortion and switching loss based on a uniform frame work. A uniform frame work, pulse number captures the performance parameter variations of different SVPWM strategies for various number of samples with heterogeneous pulse numbers. This work compares different advanced BCSVPWM techniques based on the modulation index and location of the clamping position (zero vector changing angle ) of a phase in a line cycle. The frame work provides a fixed fundamental frequency of 50Hz. The different BCSVPWM switching strategies are implemented and compared experimentally on a 415V, 2.2kW, 50Hz, 3-phase induction motor drive which is fed from an IGBT based 2 KVA voltage source inverter (VSI) with a DC bus voltage of 400 V. A low cost PIC microcontroller (PIC18F452) is used as the controller platform.

An Optical Pulse-Width Modulation Generator Using a Single-Mode Fabry-Pérot Laser Diode

  • Tran, Quoc-Hoai;Nakarmi, Bikash;Won, Yong Hyub
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.255-259
    • /
    • 2015
  • We have proposed and experimentally verified a pulse-width modulation (PWM) generator which directly generated a PWM signal in the optical domain. Output waveforms were clear at the repetition rate of 16 MHz; the duty cycle (DC) was from 14.7% to 72.1%; and the DC-control resolution was about 4.399%/dB. The PWM generator' operation principle is based on the injection-locking property of a single-mode Fabry-$P{\acute{e}}rot$ laser diode (SMFP-LD). The SMFP-LD, which has a self-locked mode wavelength at ${\lambda}_{PWM}$, was used to detect the power of the injection-locking signal (optical analog input). If the analog input power is high, the SMFP-LD is locked to the wavelength of the input signal ${\lambda}_a$ and there is no output after an optical bandpass filter (OBF). If the analog input power is low, the SMFP-LD is unlocked and there is output signal at ${\lambda}_{PWM}$ after the OBF. Thus, the SMFP-LD plus the OBF provide digital output for an analog input. The DC of the output PWM signal can be controlled by tuning the power of the analog input.

A Carrier-Based Pulse Width Modulation Method for Indirect Matrix Converters

  • Nguyen, Dinh-Tuyen;Lee, Hong-Hee;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.448-457
    • /
    • 2012
  • This paper proposes a carrier-based pulse width modulation (PWM) method to control an indirect matrix converter (IMC) by analyzing the relationship between the space vector PWM (SVPWM) and the carrier-based PWM. The complexity of the SVPWM method for an IMC can be reduced by using an equivalent carrier-based PWM method. The advantage of the proposed algorithm is its ability use only one symmetrical triangular carrier signal to generate the gate signals for all of the power switches in both the rectifier and inverter stages as compared to the conventional method where the carrier signal used in the rectifier stage is different from that of the inverter stage. In addition, by using a suitable offset voltage component in the modulation signals, the output voltage magnitude reaches 0.866 of the input voltage magnitude. Simulation and experimental results are provided in order to validate the proposed method.

Smart Dimming Control Algorithm for Reducing Power Consumption of LED TV Backlight (LED TV 백라이트 소비전력 저감을 위한 스마트 디밍 알고리즘 개발)

  • Ryu, Je-Seung;Park, Ju-Hee;Lim, Seong-Ho;Kim, Tae-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.320-326
    • /
    • 2014
  • In this paper, the new smart dimming algorithm which is mixed with PWM and PAM control method is proposed for reducing the power consumption of LED TV Backlight. The proposed technique is using the curve characteristics of LED forward voltage and current which is proportionally changing LED forward voltage as changing LED forward current. Therefore, each PWM and PAM control method has different LED forward voltage and current in the same brightness condition. The PWM control method adjusts the brightness of LED TV Backlight by only varying the duty ratio of PWM and constantly sustaining the amplitude of LED forward current and voltage. So, the level of LED forward current and voltage in the PWM control method is relatively high and constant regardless of duty ratio of PWM. On the other hand, the PAM control method adjusts the brightness of LED TV Backlight by directly varying the level of LED forward current. So, the level of LED forward current and voltage in the PAM control method is lowered according to the brightness level. For the above-mentioned reason, the PAM control method has the advantage of reducing the total power consumption of LED TV Backlight at the brightness condition of below 100%, compared with PWM control method. By implementing this characteristic to LED driver circuit with control algorithm in MCU, the power consumption of LED TV Backlight can expect to be reduced. The effectiveness of the proposed method, new smart dimming algorithm, CPWAM(=Conditional Pulse Width Amplitude Modulation), has been verified by experimental results.

Performance Improvement of a Buck Converter using a End-order Space Dithered Sigma-Delta Modulation based Random PWM Switching Scheme (2차 Space Dithered Sigma-Delta Modulation 기반의 Random PWM 스위칭 기법을 이용한 강압형 DC-DC 컨버터의 성능 개선)

  • Kim, Seo-Hyeong;Ju, Seong-Tak;Jung, Hea-Gwang;Lee, Kyo-Beum;Jung, Gyu-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.54-61
    • /
    • 2009
  • This paper proposes the 2nd-order SDSDM (Space Dithered Sigma-Delta Modulation) for performance improvement of a buck converter. The PWM (Pulse Width Modulation) has a drawback in that power spectrum tends to be concentrated around the switching frequency. The resulting harmonic spikes cause a EMI(Electromagnetic Interference) and switching loss in semiconductor, etc. The 1st-order SDSDM scheme is a kind of DSDM for reducing these harmonic spikes. In this scheme, a switching frequency is spread through random dither generator placed on input part. In experimental result, the proposed 2nd-order SDSDM is confirmed by applying to a buck converter.

A Distortionless Digital PWM Implementation by means of a Non-integer delay FIR filtering (소수형 디지털연산 알고리즘을 이용한 디지털 PWM의 고유한 비선형특성의 보상)

  • 정진훈;정동호
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2427-2430
    • /
    • 2003
  • A uniformly sampled digital pulse-width modulation adopting a pre-compensation filter scheme for applications in high-resolution digital-to-analog data conversion is described. It is shown that linearization of the intrinsic distortion resulting in uniformly sampled pulse-width modulation can be achieved by using a non-integer delay digital filter embedded within a noise shaping re-quantizer.

  • PDF