• Title/Summary/Keyword: PVP Bank layer

Search Result 2, Processing Time 0.017 seconds

Fabrication of TFTs by using Ink-Jet Printing Process with Poly(4-vinylphenol) Bank layer and TIPS-Pentacene Semiconductor

  • Kim, Se-Min;Kim, Min-Jung;Park, Jong-S.;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.937-939
    • /
    • 2009
  • In this paper, we report electrical properties of OTFTs made by ink-jet printing with polyvinylphenol (PVP) for bank layer and bis(triisopropylsilylenthynyl) pentacene (TIPS-pentacene) for semiconductor. We could achieve better crystallization and surface uniformity of TIPS pentacene by employing PVP bank layer. The OTFT with PVP bank layer exhibited an field-effect mobility of 0.18 $cm^2$/Vs, current on/off ratio of $2.09{\times}10^5$, and subthreshold slope of 0.42 V/decane.

  • PDF

Organic TFTs using PVP Bank and TIPS-Pentacene Semiconductor Layer patterned by Ink Jet Printing (잉크젯 방식으로 PVP 뱅크와 TIPS-펜타센 반도체 층을 제작한 유기 박막트랜지스터)

  • Kim, Se-Min;Park, Jong-Seung;Song, Chung-Kun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.992-998
    • /
    • 2009
  • We investigated the influence of organic solvents on the droplet properties of 6,13-bis (triisopropylsilylethynyl) pentacene (TIPS-pentacene), which was used for semiconductor of organic thin film transistors (OTFTs) and deposited by ink jet printing. From the result of the investigation, the conditions of a suitable solvent is that boiling point should be above $200^{\circ}C$ to reduce coffee stain and the surface tension above 32 dyn/cm to decrease the droplet size. Consequently, we selected tetralin which have a high boiling point ($207^{\circ}C$) and high surface tension (34.3 dyn/cm) as the solvent for TIPS-pentacene, and applied it to OTFTs. In fabrication process the conventional bank process employing photolithography and etching process was replaced by ink jet printed bank process, resulting in simplifying the process. Especially, polyvinylphenol was used for the bank, and the high hydrophobicity could improve the confinement of TIPS molecules inside the bank, enhancing the performance over the conventional hydrophilic polyvinylalcohol bank. The mobility was $0.18\;cm^2/Vs$, current on/off ratio $2.09{\times}10^5$, subthreshold slope 0.42 V/dec, and off state current $0.049\;pA/{\mu}m$.