• Title/Summary/Keyword: PVDF vibration sensor

Search Result 44, Processing Time 0.021 seconds

Portable Piezoelectric Film-based Glove Sensor System for Detecting Internal Defects of Watermelon (수박 내부결함판정을 위한 휴대형 압전형 장갑 센서시스템)

  • Choi, Dong-Soo;Lee, Young-Hee;Choi, Seung-Ryul;Kim, Hak-Jin;Park, Jong-Min;Kato, Koro
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.30-37
    • /
    • 2008
  • Dynamic excitation and response analysis is an acceptable method to determine some of physical properties of agricultural product for quality evaluation. There is a difference in the internal viscoelasticity between sound and defective fruits due to the difference of geometric structures, thereby showing different vibration characteristics. This study was carried out to develop a portable piezoelectric film-based glove sensor system that can separate internally damaged watermelons from sound ones using an acoustic impulse response technique. Two piezoelectric sensors based on polyvinylidene fluoride (PVDF) films to measure an impact force and vibration response were separately mounted on each glove. Various signal parameters including number of peaks, energy ratio, standard deviation of peak to peak distance, zero-crossing rate, and integral value of peaks were examined to develop a regression-estimated model. When using SMLR (Stepwise Multiple Linear Regression) analysis in SAS, three parameters, i.e., zeros value, number of peaks, and standard deviation of peaks were selected as usable factors with a coefficient of determination ($r^2$) of 0.92 and a standard error of calibration (SEC) of 0.15. In the validation tests using twenty watermelon samples (sound 9, defective 11), the developed model provided good capability showing a classification accuracy of 95%.

Structural Diagnosis in Time Domain on Damage Size (손상크기에 따른 시간영역에서의 구조물 진단)

  • 권대규;임숙정;방두열;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.259-262
    • /
    • 2002
  • This paper provides the experimental verification of a non-destructive time domain approach to examine structural damage. Time histories of the vibration response of structure were used to identify the presence of damage. Damage in a structure cause changes in the physical coefficients of mass density, elastic modulus and damping coefficient. This paper examines the use of beam like structures with PVDF sensor and PZT actuator to perform identification of those physical parameters, and hence to detect the damage. Experimental results are presented from tests on cantilevered composite beams damaged at different location and with damage of different dimensions. It is demonstrated that the method can sense the presence of damage, and characterize the damage to a satisfactory precision.

  • PDF

Fault Detection of an Intelligent Cantilever Beam with Piezoelectric Materials

  • Kwon, Tae-Kyu;Lim, Suk-Jeong;Yu, Kee-Ho;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.97.2-97
    • /
    • 2002
  • A method for the non-destructive detection of damage using parameterized partial differential equations and Galerkin approximation techniques is presented. This method provides the theoretical and experimental verification of a nondestructive time domain approach to examine structural damage in smart structure. The time histories of the vibration response of structure were used to identify the presence of damage. Damage in a structure causes changes in the physical coefficients of mass density, elastic modulus and damping coefficient. This paper examines the beam-like structures with PVDF sensor and PZT actuator to perform identification of those physical parameters and to detect the...

  • PDF

Robust Control of a Glass-Fiber Reinforced Composite Beam using $\mu$-Synthesis Algorithm

  • Yun, Yeo-Hung;Lee, Young-Choon;Kwon, Tae-Kyu;Yu, Kee-Ho;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.498-498
    • /
    • 2000
  • A study on the robust control of a composite beam with a distributed PVDF sensor and piezo-ceramic actuator is presented in this paper. 1st and 2nd natural frequencies are considered in the modeling, because robust control theory which has robustness to structured uncertainty is adopted to suppress the vibration. If the controllers designed by H$_{\infty}$ theory do not satisfy control performance, it is improved by $\mu$-synthesis method with D-K iteration so that the $\mu$-controller based on the structured singular value satisfies the nominal performance and robust performance. Simulation and experiment were carried out with the designed controller and the verification of the robust control properties was presented by results.

  • PDF