• Title/Summary/Keyword: PVDF 필름

Search Result 78, Processing Time 0.025 seconds

Detection of Tracheal Sounds using PVDF Film and Algorithm Establishment for Sleep Apnea Determination (PVDF 필름을 이용한 기관음 검출 및 수면무호흡 판정 알고리즘 수립)

  • Jae-Joong Im;Xiong Li;Soo-Min Chae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.119-129
    • /
    • 2023
  • Sleep apnea causes various secondary disease such as hypertension, stroke, myocardial infarction, depression and cognitive impairment. Early detection and continuous management of sleep apnea are urgently needed since it causes cardio-cerebrovascular diseases. In this study, wearable device for monitoring respiration during sleep using PVDF film was developed to detect vibration through trachea caused by breathing, which determines normal breathing and sleep apnea. Variables such as respiration rate and apnea were extracted based on the detected breathing sound data, and a noise reduction algorithm was established to minimize the effect even when there is a noise signal. In addition, it was confirmed that irregular breathing patterns can be analyzed by establishing a moving threshold algorithm. The results show that the accuracy of the respiratory rate from the developed device was 98.7% comparing with the polysomnogrphy result. Accuracy of detection for sleep apnea event was 92.6% and that of the sleep apnea duration was 94.0%. The results of this study will be of great help to the management of sleep disorders and confirmation of treatment by commercialization of wearable devices that can monitor sleep information easily and accurately at home during daily life and confirm the progress of treatment.

Development of PVDF sensor and system to detect breathing sounds during deep sedation (진정 마취 시 호흡음 검출을 위한 PVDF 센서 및 시스템 개발)

  • Lee, Seung-Hwan;Li, Xiong;Im, Jae-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.153-159
    • /
    • 2019
  • Respiration is one of the important vital signs to determine the condition of the patient. Especially during deep sedation, since the patient's apnea and hypopnea are difficult to detect without continuous monitoring, there is a need for a continuous respiration monitoring method that can accurately and simply determine the patient's respiratory condition. Currently, respiration monitoring methods using various devices have been developed, but these methods have not only late response time but also low reliability at the clinical stage. In this study, attachable sensor using PVDF(polyvinylidene fluoride) film and a monitoring device which could detect abnormal symptoms of breathing in early stage during deep sedation. The results of this study can be used in various medical fields including not only in the area of remote monitoring for respiration related sleep monitoring but also in routine monitoring during deep sedation.

Evaluation of Output Performance of Flexible Thermoelectric Energy Harvester Made of Organic-Inorganic Thermoelectric Films Based on PEDOT:PSS and PVDF Matrix (PEDOT:PSS 및 PVDF 기반의 유-무기 열전 필름으로 제작된 플렉서블 열전 에너지 하베스터의 발전 성능 평가)

  • Yujin Na;Kwi-Il Park
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.295-301
    • /
    • 2023
  • Thermoelectric (TE) energy harvesting, which converts available thermal resources into electrical energy, is attracting significant attention, as it facilitates wireless and self-powered electronics. Recently, as demand for portable/wearable electronic devices and sensors increases, organic-inorganic TE films with polymeric matrix are being studied to realize flexible thermoelectric energy harvesters (f-TEHs). Here, we developed flexible organic-inorganic TE films with p-type Bi0.5Sb1.5Te3 powder and polymeric matrices such as poly(3,4-eethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and poly (vinylidene fluoride) (PVDF). The fabricated TE films with a PEDOT:PSS matrix and 1 wt% of multi-walled carbon nanotube (MWCNT) exhibited a power factor value of 3.96 µW·m-1·K-2 which is about 2.8 times higher than that of PVDF-based TE film. We also fabricated f-TEHs using both types of TE films and investigated the TE output performance. The f-TEH made of PEDOT:PSS-based TE films harvested the maximum load voltage of 3.4 mV, with a load current of 17.4 µA, and output power of 15.7 nW at a temperature difference of 25 K, whereas the f-TEH with PVDF-based TE films generated values of 0.6 mV, 3.3 µA, and 0.54 nW. This study will broaden the fields of the research on methods to improve TE efficiency and the development of flexible organic-inorganic TE films and f-TEH.

Energy harvesting characteristics on curvature based PVDF cantilever energy harvester due to vortex induced vibration (곡면을 가진 외팔보형 PVDF 에너지 하베스터의 와류유기진동으로 인한 에너지 수확 특성)

  • Woo-Jin Song;Jongkil Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.168-177
    • /
    • 2024
  • When designing an underwater Piezoelectric Energy Harvester (PEH), Vortex Induced Vibration (VIV) is generated throughout the cantilever through a change in curvature, and the generation of VIV increases the vibration displacement of the curved cantilever PEH, which is an important factor in increasing actual power. The material of the curved PEH selected a Polyvinyline Di-Floride (PVDF) piezoelectric film, and the flow velocity is set at 0.1 m/s to 0.50 m/s for 50 mm, 130 mm, and 210 mm with various curvatures. The strain energy change of PEH by VIV was observed. The smaller the radius of curvature, the larger the VIV, and as the flow rate increased, more VIV appeared. Rapid shape transformation due to the small curvature was effective in generating VIV, and strain energy, normalized voltage, average power, etc. To increase the amount of power of the PEH, it is considered that the average power will increase as the number of curved PEHs increases as well as the steep curvature is improved.

Development of energy expenditure measurement device based on voice and body activity (음성과 활동량을 이용한 에너지 소모량 측정기기 개발)

  • Im, Jae Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.6
    • /
    • pp.303-309
    • /
    • 2012
  • Energy expenditure values were estimated based on the voice signals and body activities. Voice signals and body activities were obtained using PVDF contact vibration sensor and 3-axis accelerometer, respectively. Vibration caused by voices, activity signals, and actual energy consumption were acquired using data acquisition system and gas analyzer. With the use of power values from the voice signals and weight as independent variables, R-square of 0.918 appeared to show the highest value. For activity outputs, use of signal vector magnitude, body mass index, height, and age as independent variables revealed to provide the highest correlation with actual energy expenditure. Estimation of energy expenditure based on voice and activity provides more accurate results than based on activity only.

Vibration Control System Design of Composite Shell by Profile Optimization of PVDF film (PVDF 필름 형상최적화에 의한 복합재료 쉘의 진동제어 시스템 설계)

  • 황준석;목지원;김승조
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.228-231
    • /
    • 2000
  • The active vibration control of laminated composite shell has been performed with the optimized sensor/actuator system. PVDF film is used fur the material of sensor/actuator. Finite element method is utilized to model the whole structure including the piezoelectric sensor/actuator system, The distributed selective modal sensor/actuator system is established to prevent the adverse effect of spillover. In the finite element discretization process, the nine-node shell element with five nodal degrees of freedoms is used. Electrode patterns and lamination angles of sensor/actuator are optimized using genetic algorithm. Sensor is designed to minimize the observation spillover, and actuator is designed to minimize the system energy of the control modes under a given initial condition. Modal sensor/actuator profiles are optimized for the first and the second modes suppression of singly curved cantilevered composite shell structure. Discrete LQG method is used as a control law. The real time vibration control with profile optimized sensor/actuator system has been performed. Experimental result shows successful performance of the integrated structure for the active vibration control.

  • PDF

High-Velocity Impact Damage Detection of Gr/Ep Composite Laminates Using Piezoelectric Thin Film Sensor Signals (압전필름센서 신호를 이용한 Gr/Ep 복합재 적층판의 고속충격 손상탐지)

  • Kim, Jin-Won;Kim, In-Gul
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.13-16
    • /
    • 2005
  • The mechanical properties of composite materials may degrade severely in the presence of damage. Especially, the high-velocity impact such as bird strike, a hailstorm, and a small piece of tire or stone during high taxing, can cause sever damage to the structures and sub-system in spite of a very small mass. However, it is not easy to detect the damage in composite plates using a single technique or any conventional methods. In this paper, the PYDF(polyvinylidene fluoride) film sensors and strain gages were used for monitoring impact damage initiation and propagation in composite laminates. The WT(wavelet transform) and STFT(short time Fourier transform) are used to decompose the sensor signals. A ultrasonic C-scan and a digital microscope are also used to examine the extent of the damage in each case. This research demonstrate how various sensing techniques, PVDF sensor in particular, can be used to characterize high-velocity impact damage in advanced composites.

  • PDF

Vibration Control of a Glass-Fiber Reinforced Termoplastic Composite Beam (유리섬유를 함유한 열가소성 복합재 보의 진동제어)

  • 권대규;윤여흥;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.11-14
    • /
    • 2000
  • This paper presents the vibration control of a glass-fiber reinforced thermoplastic composite beam with a distributed PVDF sensor and piezo-ceramic achlator. The three types of different controllen which are PID, H$\infty$ , and p-synthesis ontrollcr are employed to achieve vibration suppression in the transient vibration of composite beam. In the H$\infty$ , controller design, 1st and 2nd natural frequencies are considered in the modeling, because robust control theory which has robustness to struchred uncertainty is adopled Lo suppress the vibration. If the controller designed by H$\infty$ , theory does not satisfy control performance, it is improved by $\mu$ -synthesis method with D-K iteration so that the$\mu$-contoller based on the structured singular value satisfies the nominal performance and robust performance Simulations and experiments were carried out with the designed controllers m order to demonstrate the suppression efficiency of each controller.

  • PDF

Enhancement of Oxygen Transfer Efficiency Using Vibrating lung Assist Device in In-Vitro Fluid Flow (In-vitro 유동장에서 진동형 폐 보조장치를 이용한 산소전달 효율의 향상)

  • 권대규;김기범;이삼철;정경락;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1332-1335
    • /
    • 2003
  • This paper presents the enhancement of oxygen transfer efficiency using the vibrating intravascular lung assist device (VIVLAD) in in-vitro experiments for patients having chronic respiratory problems. The test section was a cylinder duct with the inner diameter of 30 mm. The flow rate was controlled by the pump and monitored by a built-in flow meter. The vibration apparatus was composed of a piezo-vibrator, a function generator. and a power amplifier. The direction of vibration was radial to the fluid flow. Gas flow rates of up to 6 l/min through the 120-cm-Jong hollow fibers have been achieved by exciting a piezo-vibrator. The output of PVDF sensor were investigated by various frequencies in VIVLAD. The experimental results showed that VIVLAD would be enhance oxygen transfer efficiency.

  • PDF

Thermally Simulated Current of Corona-Charged PVDF Film (코로나 대전된 PVDF 필름의 열자격 전류)

  • Kim, C.H.;Kim, G.Y.;Hong, J.W.;Lee, J.U.
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.489-491
    • /
    • 1987
  • It has been shown that the thermally stimulated current technique can be one of the most powerful methods for evaluating the electrical properties. An unstretched $\alpha$-form specimen of corona-charged, 50[${\mu}m$],t Polyvinylidene Fluoride shows four TSC peaks designated $\delta}$, $\gamma$, $\beta$ and $\alpha$ in assending order of temperature in temperature range $-100{\sim}200^{\circ}C$. The $\delta$, $\gamma$ peaks may be attributed to the dipolar depolarization in the amorphous regions and $\beta$, $\alpha$ peaks are associated with the detrap from trapped carriers in the crystalline regions.

  • PDF