• Title/Summary/Keyword: PVA섬유

Search Result 243, Processing Time 0.022 seconds

Unconfined Compressive Strength of Fiber-reinforced Cemented Sands by Fiber Reinforcement Form (섬유의 보강 형태에 따른 섬유-시멘트 혼합토의 일축압축강도특성)

  • Park, Sung-Sik;Kim, Young-Su;Lee, Jong-Cheon
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.159-169
    • /
    • 2007
  • The behavior of fiber-reinforced cemented sands (FRCS) was studied to improve a brittle failure mode observed in cemented sands. Nak-dong River sand was mixed with ordinary Portland cement and a Polyvinyl alcohol (PVA) fiber. A PVA fiber is widely used in concrete and cement reinforcement. It has a good adhesive property to cement and a specific gravity of 1.3. A PVA fiber has a diameter of 0.1 mm that is thicker than general PVA fiber for reinforced cement. Clean Nak-dong River sand, cement and fiber at optimum water content were compacted in 5 layers giving 55 blows per layer. They were cured for 7 days. Cemented sands with a cement/sand ratio of 4% were fiber-reinforced at different locations and tested for unconfined compression tests. The effect of fiber reinforcement form and distribution on strength was investigated. A specimen with evenly distributed fiber showed two times more strength than not-evenly reinforced specimen. The strength of fiber-reinforced cemented sands increases as fiber reinforcement ratio increases. A fully reinforced specimen was 1.5 times stronger than a specimen reinforced at only middle part. FRCS behavior was controlled not only by a dosage of fiber but also by fiber distribution methods or fiber types.

An Experimental Study on the Mechanical Properties of HPFRCCs Reinforced with the Micro and Macro Fibers (마이크로 및 매크로 섬유에 의해 보강된 고인성 시멘트 복합재료의 역학적 특성에 관한 실험적 연구)

  • Kim Moo-Han;Kim Jae-Hwan;Kim Yong-Ro;Kim Young-Duck
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.263-271
    • /
    • 2005
  • HPFRCC(High Performance Fiber Reinforced Cementitious Composite) is a class of FRCCs(Fiber Reinforced Cementitious Composites) that exhibit multiple cracking. Multiple cracking leads to improvement in properties such as ductility, toughness, fracture energy, strain hardening, strain capacity, and deformation capacity under tension, compression, and bending. These improved properties of HPFRCCs have triggered unique and versatile structural applications, including damage reduction, damage tolerance, energy absorption, crack distribution, deformation compatibility, and delamination resistance. These mechanical properties of HPFRCCs become different from the kinds and shapes of used fiber, and it is known that the effective size of fiber in macro crack is different from that in micro crack. This paper reports an experimental findings on the mechanical properties of HPFRCCs reinforced with the micro fiber(PP50, PVA100 and PVA200) and macro fiber(PVA660, SF500). Uniaxial compressive tests and three point bending tests are carried out in order to compare with the mechanical properties of HPFRCCs reinforced with micro fibers or hybrid fibers such as compressive strength, ultimate bending stress, toughness, deformation capacity and crack pattern under bending, etc.,

Preparation of Syndiotacticity-Rich Ultrahigh Molecular Weight Poly(vinyl alcohol) with High Yield Using Low Temperature Suspension Polymerization of Vinyl Pivalate (피발산비닐의 저온 현탁중합에 의한 고교대배열 초고분자량 폴리비닐알코올의 고효율 제조)

  • 류원석;박찬식
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.33-36
    • /
    • 2002
  • 폴리비닐알코올 (poly(vinyl alcohol), PVA)은 의류 및 산업용 섬유, 막, 약물전달, 암세포 괴사용 색전제등에 널리 사용되고 있다[1,2]. 이런 PVA와 같은 비닐계 고분자는 분자량 이외에도 입체규칙성에 따라 그 물리적 성질이 변화하는데 그 입체규칙성에 따라 혼성배열, 동일배열 및 교대배열 고분자로 분류할 수 있다. PVA는 일반적으로 55% 이상의 교대배열 다이애드기 함량을 가질 때 교대배열 PVA라고 불린다. (중략)

  • PDF

Preperation of fiber and Characterization of Hydroxyapatite/PVA hybrid fiber in Wet spinning (습식방사를 이용한 Hydroxyapatite/PVA 복합섬유의 제조 및 특성)

  • 강성일;정용식;박병기;김환철;이근완
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.325-326
    • /
    • 2003
  • 유기물질과 무기물질의 복합체 제조는 일찍이 1980년대 초부터 연구되어 오고 있고, 새로운 성능 및 기능 확대를 목표로 계속 이루어지고 있다[1-2]. 폴리비닐알코올(Poly(vinyl alcohol), PVA)은 분리막, 투석, 약물전달, 암세포 괴사용 색전제 등 의료 및 산업용 섬유로 널리 사용되고 있는 비닐계 고분자이다[3,4]. 또한 무기화합물인 Hydroxyapatite(HAp)는 칼슘 포스페이트계 세라믹으로, 중금속 흡착성, 항균성, 생체 친화성 등이 우수하여 의료용 소재로 사용되어 오고 있다. (중략)

  • PDF

Characteristics of PVA for pervaporation membrane (투과증발막용 PVA 제조특성)

  • Gang, So-Ra;Yoon, Suk-Young;Chang, Duk-Rye
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.518-519
    • /
    • 2009
  • 투과증발은 저 에너지 분리기술로서 공비혼합물의 분리 및 유기화화물을 선택적으로 분리하는 공정에 활용되고 있다. 투과증발공정을 위한 막으로 쓰이는 대표적인 고분자 재료인 친수성 고분자 PVA(Poly(vinyl alcohol)는 하이드로실 그룹을 포함하고 있어 물에 대한 선택도가 뛰어난 장점을 가지고 있다. 그러나 PVA는 물에 대한 친화력이 높아 투과증발막으로 적용하기 위해서는 내수성을 향상시키기 위하여 가교시킨후 투과증발막으로 사용가능하다. 본 연구에서는 PVA 분리막을 투과증발막으로 적용하기 위하여 PVA를 전기방사에 의해 나노섬유로 제조하고 제조된 나노섬유가 수용액에서 내수성을 갖게 하기 위해 10-70%의 KOH수용액에 가교화 하여 특성을 알아보았다.

  • PDF

Tensile Behavior of Hybrid Fiber Reinforced Cement Composite According to the Hooked Steel Fiber and Polyvinyl Alcohol Fiber Blending Ratio and Strain Rate (후크형 강섬유와 폴리비닐알코올 섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장거동)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.98-105
    • /
    • 2017
  • In this study, the fiber blending ratio and strain rate effect on the tensile behavior of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber and polyvinyl alcohol fiber were used for reinforcing fiber. The fiber blending ratio of HSF+PVA were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, the tensile strength, strain capacity and fracture toughness of the hooked steel fiber reinforced cement composites were improved by the increase of the bond strength of the fiber and the matrix according to increase of strain rate. However, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by micro cracks in the matrix around hooked steel fiber. On the other hand, PVA fiber showed cut-off fracture at strain rate $10^{-6}/s$ with multiple cracks. However, at the strain rate $10^1/s$, the multiple cracks and strain capacity were decreased because of the pull-out fracture of PVA fiber. The HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. In addition, the synergistic response of fracture toughness was positive because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance of hooked steel fiber at strain rate $10^1/s$.

Flexural and Impact Resisting Performance of HPFRCCs Using Hybrid PVA Fibers (하이브리드 PVA 섬유를 이용한 HPFRCCs의 휨 및 충격 성능 평가)

  • Kim, Young-Woo;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.705-712
    • /
    • 2009
  • HPFRCCs (high-performance fiber reinforced cementitious composites), which is relatively more ductile and has the characteristic of high toughness with high fiber volume fractions, can be used in structures subjected to extreme loads and exposed to durability problems. In the case of PVA (polyvinyl alcohol) fiber, it is noted by former studies that around 2% fiber volume fractions contributes to the most effective performance at HPFRCCs. In this study, flexural tests were carried out to evaluate the flexural behavior of HPFRCCs and to optimize mix proportions. Two sets of hybrid fiber reinforced high performance specimens with total fiber volume fraction of 2 % were tested: the first set prepared by addition of short and long PVA fibers at different combination of fiber volume fractions, and the second set by addition of steel. In addition, in order to assess the performances of the HPFRCCs against to high strain rates, drop weight tests were conducted. Lastly, the sprayed FRP was applied on the bottom surface of specimens to compare their impact responses with non-reinforcing specimens. The experimental results showed that the specimen prepared with 1.6% short fibers (REC 15) and 0.4% long fiber (RF4000) outperformed the other specimens under flexure, and impact loading.

A Study on the Fire Resistance Performance of Mortars Using Mesoporous Silica Nanoparticles(MSNs) and PVA Fibers (다공성 나노실리카 입자(MSNs)와 PVA섬유를 혼입한 모르타르의 내화성능에 관한 연구)

  • Cheonpyo Park;Jakyung Lee;Taehyung Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.51-61
    • /
    • 2023
  • In this study, in order to improve the fire resistance performance of structures in case of fire in buildings and structures, PVA fibers and the ZnO particles combined with mesoporous nano silica (MSNs) were mixed with cement mortar, and the specimen was exposed to a temperature range of 20~1100℃. Then the residual compressive strength and weight change rate were measured to determine whether the fire resistance performance changed. As a result of the study, it was found that mixing mesoporous nano silica and PVA fiber together did not contribute to improving the fire resistance performance of cement mortar. On the other hand, mixing 0.5% of mesoporous nano silica and 0.1 vol% of PVA fiber showed the best improvement test results, showing that it was advantageous for fire resistance performance.

Preparation of Coil-Embolic Material Using Syndiotactic Poly(vinyl alcohol) Gel Spun Fibers (교대배열 PVA 젤 섬유를 이용한 고분자 색전 코일 제조)

  • Seo, Young Ho;Oh, Tae Hwan;Han, Sung Soo;Joo, Sang Woo;Khil, Myeong Seob
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.486-493
    • /
    • 2013
  • The structure, morphology, and physical properties of syndiotatic poly(vinyl alcohol) (s-PVA) gel spun fibers were investigated to prepare polymeric embolization coils. S-PVA was prepared by saponification of the poly(vinyl acetate)/poly(vinyl pivalate)(PVAc/PVPi) copolymer. The viscosity of s-PVA solutions showed shear thinning behavior and the solution formed a homogeneous phase. Based on shear viscosity change with concentration, the optimum dope concentration was selected as 13 wt%, after which s-PVA fibers were spun and the solvent was removed. The fibers were then drawn with a maximum draw ratio of 15. A polymeric embolization coil was made of the s-PVA gel-spun fibers. The fibers were wound densely onto rigid rod and then annealed at different annealing temperatures. The polymeric embolization coil annealed at $200^{\circ}C$ was similar to metallic coils and its shape was maintained well after extension. Overall, gel-spun PVA fibers performed well for the preparation of primary and secondary coils to replace metallic coils.