• Title/Summary/Keyword: PV power generation

Search Result 536, Processing Time 0.026 seconds

Fault Prediction of Photovoltaic Monitoring System based on Power Generation Prediction Model (발전량 예측 모델 기반의 태양광 모니터링 시스템 고장 예측)

  • Hong, Jeseong;Park, Jihoon;Kim, Youngchul
    • Journal of Platform Technology
    • /
    • v.6 no.2
    • /
    • pp.19-25
    • /
    • 2018
  • Existing Photovoltaic(PV) monitoring system monitors the current, past power generation, all values of environmental sensors. It is necessary to predict solar power generation for efficient operation and maintenance on the power plant. We propose a method for estimating the generation of PV data based PV monitoring system with data accumulation. Through this, we intend to find the failure prediction of the photovoltaic power plant in proportion to the predicted power generation. As a result, the administrator can predict the failure of the system it will be prepared in advance.

Development of ESS Scheduling Algorithm to Maximize the Potential Profitability of PV Generation Supplier in South Korea

  • Kong, Junhyuk;Jufri, Fauzan Hanif;Kang, Byung O;Jung, Jaesung
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2227-2235
    • /
    • 2018
  • Under the current policies and compensation rules in South Korea, Photovoltaic (PV) generation supplier can maximize the profit by combining PV generation with Energy Storage System (ESS). However, the existing operational strategy of ESS is not able to maximize the profit due to the limitation of ESS capacity. In this paper, new ESS scheduling algorithm is introduced by utilizing the System Marginal Price (SMP) and PV generation forecasting to maximize the profits of PV generation supplier. The proposed algorithm determines the charging time of ESS by ranking the charging schedule from low to high SMP when PV generation is more than enough to charge ESS. The discharging time of ESS is determined by ranking the discharging schedule from high to low SMP when ESS energy is not enough to maintain the discharging. To compensate forecasting error, the algorithm is updated every hour to apply the up-to-date information. The simulation is performed to verify the effectiveness of the proposed algorithm by using actual PV generation and ESS information.

Power Prediction of P-Type Si Bifacial PV Module Using View Factor for the Application to Microgrid Network (View Factor를 고려한 마이크로그리드 적용용 고효율 P-Type Si 양면형 태양광 모듈의 출력량 예측)

  • Choi, Jin Ho;Kim, David Kwangsoon;Cha, Hae Lim;Kim, Gyu Gwang;Bhang, Byeong Gwan;Park, So Young;Ahn, Hyung Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.182-187
    • /
    • 2018
  • In this study, 20.8% of a p-type Si bifacial solar cell was used to develop a photovoltaic (PV) module to obtain the maximum power under a limited installation area. The transparent back sheet material was replaced during fabrication with a white one, which is opaque in commercial products. This is very beneficial for the generation of more electricity, owing to the additional power generation via absorption of light from the rear side. A new model is suggested herein to predict the power of the bifacial PV module by considering the backside reflections from the roof and/or environment. This model considers not only the frontside reflection, but also the nonuniformity of the backside light sources. Theoretical predictions were compared to experimental data to prove the validity of this model, the error range for which ranged from 0.32% to 8.49%. Especially, under $700W/m^2$, the error rate was as low as 2.25%. This work could provide theoretical and experimental bases for application to a distributed and microgrid network.

Outdoor Testing and Degradation of EVA and POE Encapsulated Photovoltaic Modules (옥외 관측을 통한 EVA, POE PV모듈의 열화 연구)

  • Kim, Jeha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.847-852
    • /
    • 2016
  • Using both EVA and POE encapsulants, we fabricated polycrystalline Si PV modules and performed a set of reliability tests of PID, DH, TC, and Complex prior to outdoor installation. The power output with temperatures and insolation as well as I-V characteristics had been monitored under outdoor environments for 18 months. In the entire period, the total power of 3,576 kWh from POE PV modules was observed larger than 3,449 kWh from EVA PV modules by 3.5%. All the PV modules showed a 5.6~9.2% drop in the conversion efficiency. As for the solar power generation, the PV modules performed through PID, TC test revealed distinct difference in between EVA and POE for which the POE PV module produced more power by +11.4% and +6.6%, respectively, as measured in the 18th month. In addition, POE was proved to protect better the solar cells under PID influence.

A New Solar Energy Conversion System Implemented Using Single Phase Inverter (단상 인버터를 이용한 새로운 태양광 에너지 변환 시스템 구현)

  • Kim, Sil-Keun;Hong, Soon-Ill
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.74-80
    • /
    • 2006
  • This paper describes a solar energy conversion strategy is applied to grid-connected single phase inverter by the maximum power point of conversion strategy. The maximum power point of tracking is controlled output power of PV(photovoltaic)modules, based on generated circuit control MOSFET switch of two boost converter for a connected single phase inverter with four IGBT's switch in full bridge. The generation control circuit allows each photovoltaic module to operate independently at peak capacity, simply by detecting of the output power of PV module. Furthermore, the generation control circuit attenuates low-frequency ripple voltage. which is caused by the full-bridge inverter, across the photovoltaic modules. The effectiveness of the proposed inverter system is confirmed experimentally and by means of simulation.

Control Strategies of Mobility Charging Systems Using PV-ESS Systems (태양광 발전과 에너지저장시스템을 활용한 모빌리티 충전 시스템의 제어 방법)

  • Kim, Dae-Won;Lee, Hyeon-Min;Park, Sung-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.334-341
    • /
    • 2021
  • Operation modes and control strategies for single-phase mobility charging station utilizing photovoltaic (PV) generation and energy storage systems (ESS) are proposed. This approach generates electric power from PV to transmit the mobility, ESS, and then transfer it to the grid when surplus electric power is generated during daytime. However, the PV power cannot be generated during night-time, and ESS and the mobility system can be charged using grid power. The power balance control based on power fluctuations and the resonant current control that can compensate harmonic components have been added to increase the stability of the system. The MATLAB/Simulink simulation was carried out to verify the proposed control method, and the 2-kW single-phase grid-tied PV-ESS smart mobility charger was built and tested.

A Study on the Design of Power System for Buoy (등부표 전력 시스템 설계에 관한 연구)

  • Jo, Kwan-Jun;Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.35 no.8
    • /
    • pp.631-636
    • /
    • 2011
  • Stable power supply to a light mounted on a navigational buoy is indispensable factor because unstable power can lead to fatal marine accident. Despite the difference lies between onshore and offshore environment, as well as the power output characteristics, the PV(Photovoltaic) power generation system is designed by the independent onshore power generation system standards. Furthermore, the capacity of PV power generation system does not take into account the structural characteristics of the buoy in the sea. Therefore, the faulty design makes battery over-discharge owing to lack of the power generation and the battery can not supply stable power to the light. This paper introduces a design method for a power system of the PV powered buoy. The data has been acquired for 3 months period, which includes PV-generated electricity, power consumption and battery voltage from experimental buoy. Further, a power management features of the buoy has been analyzed based on the acquired data. From the analysis of the acquired data, it was evident that PV power generation system produces different electric power output depend on its installed environment - land and sea. Based on the analytical result, a design criterion has been proposed for the power system in the navigational buoy.

Photovoltaic System Output Forecasting by Solar Cell Conversion Efficiency Revision Factors (태양전지 변환효율 보정계수 도입에 의한 태양발전시스템 발전량 예측)

  • Lee Il-Ryong;Bae In-Su;Shim Hun;Kim Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.4
    • /
    • pp.188-194
    • /
    • 2005
  • There are many factors that affect on the system output of Photovoltaic(PV) power generation; the variation of solar radiation, temperature, energy conversion efficiency of solar cell etc. This paper suggests a methodology for calculation of PV generation output using the probability distribution function of irradiance, PV array efficiency and revision factors of solar cell conversion efficiency. Long-term irradiance data recorded every hour of the day for 11 years were used. For goodness-fit test, several distribution (unctions are tested by Kolmogorov-Smirnov(K-S) method. The calculated generation output with or without revision factors of conversion efficiency is compared with that of CMS (Centered Monitoring System), which can monitor PV generation output of each PV generation site.

Water Quality Improvement System Using High Voltage Electric Field with Self-Generation System (자가 발전 시스템을 갖춘 고전압 전기장 수질개선 장치 개발)

  • Kang, Rae-Yun;Kang, Chul-Ung
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.84-89
    • /
    • 2015
  • The occurrence of algae caused by eutrophication of fresh water is a pollution source to destroy the aquatic environment. When the high voltage electric field is applied in the water, When a high voltage is applied to the electric field in the water, the algae can be broken the balance of cell membranes, and is dead. In this paper, we develop a water quality improvement system for generating an electric field having a higher energy than the zeta potential when a high voltage is applied to 4,000V. To ensure the mobility of the water quality improvement system, we designed the PV generation system using the optimal size technique that is based on the model of power lack ratio. By evaluating the output characteristics of the water quality improvement system, power generation characteristics of the PV generation system, and battery charging characteristics, we can show that the proposed system can be applicable to the water quality improvement system inhibiting the growth rate of the algae in the fresh water.

Analysis of Daylight Distributions and Solar Radiation to Verify the Applicability of Blind PV Systems Using Simulation (블라인드PV 시스템의 적용성 검증을 위한 주광 특성 및 일사량 분석 시뮬레이션)

  • Hong, Seong-Kwan;Choi, An-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • Daylight provides residents with good visual environment. And available daylight in inside provides positive influence on psychological and physiological aspects. Also, sunlight can be converted directly into electricity using PV(photovoltaic) power generation. This study was to analyze characteristics of daylight distributions, calculate an amount of solar radiation and a PV power generation on the building facade using Radiance and Ecotect simulation programs. Ultimately, the purpose of this study is to verify the applicability of Blind PV systems.