• Title/Summary/Keyword: PV inverter

Search Result 344, Processing Time 0.027 seconds

A Novel Input and Output Harmonic Elimination Technique for the Single-Phase PV Inverter Systems with Maximum Power Point Tracking (최대출력추종 제어를 포함한 단상 태양광 인버터를 위한 새로운 입출력 고조파 제거법)

  • Amin, Saghir;Ashraf, Muhammad Noman;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.207-209
    • /
    • 2019
  • This paper proposes a grid-tied photovoltaic (PV) system, consisting of Voltage-fed dual-active-bridge (DAB) dc-dc converter with single phase inverter. The proposed converter allows a small dc-link capacitor, so that system reliability can be improved by replacing electrolytic capacitors with film capacitors. The double line frequency free maximum power point tracking (MPPT) is also realized in the proposed converter by using Ripple Correlation method. First of all, to eliminate the double line frequency ripple which influence the reduction of DC source capacitance, control is developed. Then, a designing of Current control in DQ frame is analyzed and to fulfill the international harmonics standards such as IEEE 519 and P1547, $3^{rd}$ harmonic in the grid is directly compensated by the feedforward terms generated by the PR controller with the grid current in stationary frame to achieve desire Total Harmonic Distortion (THD). 5-kW PV converter and inverter module with a small dc-link film capacitor was built in the laboratory with the proposed control and MPPT algorithm. Experimental results are given to validate the converter performance.

  • PDF

Novel Concept of Shunt Active Filter Function Added in PV Generation System (엑티브필터 기능을 추가한 새로운 태양광 발전시스템의 제안)

  • Kim, Bong-Tae;Park, Min-Won;Seong, Ki-Chul;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.296-300
    • /
    • 2001
  • Novel concept of shunt active filter (AF) function added in Photovoltaic (PV) generation system is described in this paper. So far, for the PV generation system has been treated as one of harmonic sources to the power distribution systems, not only a PV system combined with AF but also AF systems using PV module as their power source have never been discussed. The basic structure and control strategy of the PV-AF system are, for the first time, introduced in this work. In order to stabilize the output current of voltage source inverter (VSI), the reference voltage MPPT control is applied. Simulation analysis shows that it is possible to combine AF function to the three-phase grid-connected PV generation system without any physical difficulties, and the performance of the proposed PV-AF system is acceptable and stable as well.

  • PDF

Study for Reducing Ripples of the PV Array Output in Grid-Connected Photovoltaic Power System (계통연계헝 태양광인버터의 PV Array 출력리플 저감을 위한 연구)

  • Kim, Hee-Jung;Chung, Yong-Ho;Lee, Ki-Su;Jon, Young-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.202-205
    • /
    • 2006
  • In the PV power system, output of the PV array must contain inherent ripples due to the single-phase inverter. So the function of maximum power point tracking to increase the output efficiency of PV system is degraded. Therefore, to overcome this problem, this paper presents a control strategy for the reducing ripples of the PV array output in grid-connected photovoltaic power system. The proposed control system consists of two loops the maximum power point tracking loop using the perturbation and observation method is used to calculate the reference solar array terminal voltage(Vref) for reducing ripples of the PV array output and the PI control loop is used to regulate the solar array output voltage according to the Vref. The performance of proposing control strategy is analyzed by means of the PSCAD/EMTDC simulation. As a result, we may obtain the high performance of the proposed control strategy.

  • PDF

Performance improvement of PV_system's inverter that use transformer tap (변압기 탭을 이용한 태양광인버터의 성능개선)

  • Park Noh-Sik;Park Sung-Jun;Kim Kwang-Heon;Lim Young-Cheol;Kwon Soon-Jae;Kim Cheul-U
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.511-514
    • /
    • 2004
  • Proposed about new inverter that can use in PV system in this paper. Multi_level inverter that used inverter makes use of 4 transformers is basis, primary winding of each transformer voltage as can do step_up or step_down to appropriate voltage space tap lake. Put circuit that tap that turn in transformer connects properly according to inhibit signal that sense change of input voltage (output voltage of solar cell place) and transformer secondary voltage controls point of contact of relay so that get into fixed output voltage. As a result, can minimise relative harmonic content despite change width of input voltage are wide because number of output voltage level of multi_level inverter does not decrease. Because proposed circuit manufactures is easy and control is easy and is no burden of cost price rise economically, commercialization expected to do easily and this study examined propriety of action as that compose and experiments proposed circuit.

  • PDF

Control of Single-Phase Grid-Connected Photovoltaic System using a Z-Source Inverter (Z-소스 인버터를 사용한 단상 계통 연계형 태양광 시스템 제어)

  • Chun, Tae-Won;Tran, Quang-Vinh;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.369-375
    • /
    • 2008
  • In this paper, a method for controlling the a single-phase grid-connected photovoltaic(PV) system using Z-source inverter (ZSI) is proposed. The operating region of grid-connected ZSI system with a variation of PV output voltage are analyzed by considering the voltage stress across switching devices. The switching patterns for controlling effectively the shoot-through time while reducing the switching loss are suggested. Both the simulation studies and experimental results with 32-bit DSP are carried out to verify the performances of proposed system.

Unified MPPT Control Strategy for Z-Source Inverter Based Photovoltaic Power Conversion Systems

  • Thangaprakash, Sengodan
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.172-180
    • /
    • 2012
  • Z-source inverters (ZSI) are used to realize both DC voltage boost and DC-AC inversion in single stage with a reduced number of power switching devices. A traditional MPPT control algorithm provides a shoot-through interval which should be inserted in the switching waveforms of the inverter to output the maximum power to the Z-network. At this instant, the voltage across the Z-source capacitor is equal to the output voltage of a PV array at the maximum power point (MPP). The control of the Z-source capacitor voltage beyond the MPP voltage of a PV array is not facilitated in traditional MPPT algorithms. This paper presents a unified MPPT control algorithm to simultaneously achieve MPPT as well as Z-source capacitor voltage control. Development and implementation of the proposed algorithm and a comparison with traditional results are discussed. The effectiveness of the proposed unified MPPT control strategy is implemented in Matlab/Simulink software and verified by experimental results.

Photovoltaic System for SPIM Vector control (SPIM 벡터제어를 위한 태양광 발전 시스템)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Byung-Jin;Kim, Do-Yeon;Park, Ki-Tae;Choi, Jung-Hoon;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.295-299
    • /
    • 2007
  • This paper presents the photovoltaic(PV) water pumping system with a maximum power point tracking(MPPT). The wale- pumping system uses a variable speed single phase induction motor(SPIM) driven a centrifugal pimp by field oriented control(FOC) inverter. The MPPT using a DC-DC converter controlled the duty cycle to track maximum power from PV under different insolation conditions. The duty cycle directly relate with a flux producing current control($i_{ds}$). The FOC inverter uses a current control voltage source inverter(CC-VSI). The simulation results are shown that the characteristics and performance of drive system, which varies as each conditions of light by expresses in voltage ($V_{dq}$), current($I_{dq}$), speed of motor and torque.

  • PDF

A Study on Hybrid type Grid-Connected PV Inverter using Elevator Regeneration Power (엘리베이터 회생전력을 이용한 하이브리드 태양광 연계형 인버터에 관한 연구)

  • Cho, Su-Eog
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1682-1687
    • /
    • 2016
  • Approximately 520thousand elevators are operating now in Korea, about 40% ~ 60% of the elevator power is generated. In this paper, by using the method of adding regeneration power of the elevator to the grid-tied photo voltaic inverter, PV generation that was dependant on the solar radiation was significantly improved. In order to confirm this, the regeneration power of the elevator has been simulated in 12% of the rating load, and measured the regeneration power of the elevator in the actual condition to assess the differences of it. The 5[kW] hybrid grid-tied photo voltaic invertor has been fabricated to conduct an experiment for the confirmation of the proposing method. The effectiveness of the proposing method has been reassured with the result of experiment that include the transfer interface part of the regeneration power of the elevator.

Modeling of a novel power control scheme for Photovoltaic solar system

  • Park, Sung-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.417-420
    • /
    • 2008
  • Solar electric systems have very little impact on environment, making them one of the cleanest power-generating technologies available. While they are operating, PV systems produce no air pollution, hazardous waste, or noise, and they require no transportable fuels. In PV system design, the selection and proper installation of appropriately-sized components directly affect system reliability, lifetime, and initial cost. In this research, we have studied the PWM(Pulse Width Modulation) signals. I proposed an efficient photovoltaic power interface circuit incorporated with a DC-DC converter and a sine-pwm control method full-bridge inverter. In grid-connected solar power systems, the DC-DC converter operates at high switching frequency to make the output current a sine wave, whereas the full-bridge inverter operates at low switching frequency which is determined by the ac frequency. Thus, it can reduce the switching losses incurred by the full-bridge inverter. Full-bridge converter is controlled by using microprocessor control method, and its operation is verified through computer aided simulations.

A Hysteresis Current Controller for PV-Wind Hybrid Source Fed STATCOM System Using Cascaded Multilevel Inverters

  • Palanisamy, R.;Vijayakumar, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.270-279
    • /
    • 2018
  • This paper elucidates a hysteresis current controller for enhancing the performance of static synchronous compensator (STATCOM) using cascaded H-bridge multilevel inverter. Due to the rising power demand and growing conventional generation costs a new alternative in renewable energy source is gaining popularity and recognition. A five level single phase cascaded multilevel inverter with two separated dc sources, which is energized by photovoltaic - wind hybrid energy source. The voltages across the each dc source is balanced and standardized by the proposed hysteresis current controller. The performance of STATCOM is analyzed by connecting with grid connected system, under the steady state & dynamic state. To reduce the Total Harmonic Distortion (THD) and to improve the output voltage, closed loop hysteresis current control is achieved using PLL and PI controller. The performance of the proposed system is scrutinized through various simulation results using matlab/simulink and hardware results are also verified with simulation results.