• 제목/요약/키워드: PV current

검색결과 497건 처리시간 0.019초

투광형 실리콘 슁글드 태양광 모듈을 위한 타공형 스트링 제작 (Fabrication of Perforated Strings for Transparent Silicon Shingled Photovoltaic Modules)

  • 김한준;박민준;송진호;정태웅;문대한;정채환
    • Current Photovoltaic Research
    • /
    • 제8권4호
    • /
    • pp.120-123
    • /
    • 2020
  • Transparent photovoltaics (PV) are used in various applications such as building-integrated photovoltaics (BIPV). However, crystalline silicon (c-Si) is not used for developing transparent PV due to its opaque nature. Here. we fabficate the three holes in 6-inch c-Si solar cells using laser scribing process with an opening area ratio of about 6.8% for transparent c-Si solar modules. Moreover, we make the shingled strings using the perforated cells. Our 7 interconnected shingled string PV cells with 21 holes show a solar to power conversion of 5.721 W. In next work, we will fabricate a transparent c-Si PV module with perforated strings.

절곡 강판 일체형 고출력 슁글드 태양광 모듈 제조 (Fabrication of High-power Shingled PV Modules Integrated with Bent Steel Plates for the Roof)

  • 이은비;박민준;김민섭;신진호;윤성민
    • Current Photovoltaic Research
    • /
    • 제11권2호
    • /
    • pp.54-57
    • /
    • 2023
  • Recently, requirements for improving the convenience of constructing BIPV (Building Integrated Photo Voltaic) modules had increased. To solve this problem, we fabricated shingled PV modules integrated with bent steel plates for building integrated photovoltaics. These PV modules could be constructed directly on the roof without the installation structure. We found optimal lamination conditions with supporting structures to fabricate a module on a bent steel plate. Moreover, we applied a shingled design to PV modules integrated with bent steel plates to achieve a high electrical output power. The shingled module with bent steel plates shows 142.80 W of solar-to-power conversion in 0.785 m2 area.

ESS 가치평가 기반 PV-ESS 연계 EV 충전스테이션 사업 타당성 분석 (Economic Feasibility Analysis of Electrical Vehicle Charging Station Connected with PV & ESS based on ESS Valuation)

  • 이지현;제갈성;정용찬;윤아윤
    • Current Photovoltaic Research
    • /
    • 제11권4호
    • /
    • pp.124-133
    • /
    • 2023
  • In order to deploy the large-scale energy storage (ES) service in the various industry, it is very important to develop a business model with high technological and economic feasibility through detailed valuation of cost and expected benefits. In relation to this, this paper established an optimal scheduling plan for electric vehicle charging stations connected with photovoltaic (PV) and ES technologies in Korea using the distributed energy resource valuation tool and analyzed the feasibility of the project. In addition, the impact of incentives such as REC (Renewable Energy Certificate) to be given to electric vehicle charging stations in accordance with the relevant laws to be revised in the future was analyzed. As a results, the methodology presented in this paper are expected to be used in various ways to analyze the feasibility of various business models linked to renewable energy and ES technologies as well as the electric vehicle market.

태양전지 모듈의 바이패스 다이오드 동작 특성 분석 (Operation Characteristics of Bypass Diode for PV Module)

  • 김승태;박지홍;강기환;화이티루;안형근;유권종;한득영
    • 한국전기전자재료학회논문지
    • /
    • 제21권1호
    • /
    • pp.12-17
    • /
    • 2008
  • In this paper, an I-V characteristics of bypass diode has been studied by counting the shading effect in photovoltaic module. The shadow induces hot spot phenomenon in PV module due to the increase of resistance in the current path. Two different types of PV module with and without bypass diode were fabricated to expect maximum output power with an increasing shading rate of 5 % on the solar cell. Temperature distribution is also detected by shading the whole solar cell for the outdoor test. From the result, the bypass diode works properly over 60 % of shading per cell with constant output power. Maximum power generation in case of solar cell being totally shaded with bypass diode decreases 41.3 % compared with the one under STC(Standard Test Condition). On the other hand, the maximum output power of the module without bypass diode gradually decreases by showing hot spot phenomenon with the increase of shading ratio on the cell and finally indicates 95.5 % of power loss compared with the output under STC. Finally the module temperature measured increases around $10^{\circ}C$ higher than that under STC due to hot-spots which come from the condition without bypass diode. It has been therefore one of the main reasons for degrading the PV module and shortening the durability of the PV system.

Active Frequency with a Positive Feedback Anti-Islanding Method Based on a Robust PLL Algorithm for Grid-Connected PV PCS

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • 제11권3호
    • /
    • pp.360-368
    • /
    • 2011
  • This paper proposes an active frequency with a positive feedback in the d-q frame anti-islanding method suitable for a robust phase-locked loop (PLL) algorithm using the FFT concept. In general, PLL algorithms for grid-connected PV PCS use d-q transformation and controllers to make zero an imaginary part of the transformed voltage vector. In a real grid system, the grid voltage is not ideal. It may be unbalanced, noisy and have many harmonics. For these reasons, the d-q transformed components do not have a pure DC component. The controller tuning of a PLL algorithm is difficult. The proposed PLL algorithm using the FFT concept can use the strong noise cancelation characteristics of a FFT algorithm without a PI controller. Therefore, the proposed PLL algorithm has no gain-tuning of a PI controller, and it is hardly influenced by voltage drops, phase step changes and harmonics. Islanding prediction is a necessary feature of inverter-based photovoltaic (PV) systems in order to meet the stringent standard requirements for interconnection with an electrical grid. Both passive and active anti-islanding methods exist. Typically, active methods modify a given parameter, which also affects the shape and quality of the grid injected current. In this paper, the active anti-islanding algorithm for a grid-connected PV PCS uses positive feedback control in the d-q frame. The proposed PLL and anti-islanding algorithm are implemented for a 250kW PV PCS. This system has four DC/DC converters each with a 25kW power rating. This is only one-third of the total system power. The experimental results show that the proposed PLL, anti-islanding method and topology demonstrate good performance in a 250kW PV PCS.

고온고습시험에 의한 멀티 와이어 PV 모듈의 금속 간 화합물 층의 성장에 관한 연구 (A Study on Growth of Intermetallic Compounds Layer of Photovoltaic Module Interconnected by Multi-wires under Damp-heat Conditions)

  • 문지연;조성현;손형진;전다영;김성현
    • Current Photovoltaic Research
    • /
    • 제8권4호
    • /
    • pp.124-128
    • /
    • 2020
  • Output power of photovoltaic (PV) modules installed outdoors decreases every year due to environmental conditions such as temperature, humidity, and ultraviolet irradiations. In order to promote the installation of PV modules, the reliability must be guaranteed. One of the important factors affecting reliability is intermetallic compounds (IMC) layer formed in ribbon solder joint. For this reason, various studies on soldering properties between the ribbon and cell have been performed to solve the reliability deterioration caused by excessive growth of the IMC layer. However, the IMC layer of the PV module interconnected by multi-wires has been studied less than using the ribbon. It is necessary to study soldering characteristics of the multi-wire module for improvement of its reliability. In this study, we analyzed the growth of IMC layer of the PV module with multi-wire and the degradation of output power through damp-heat test. The fabricated modules were exposed to damp-heat conditions (85 ºC and 85 % relative humidity) for 1000 hours and the output powers of the modules before and after the damp-heat test were measured. Then, the process of dissolving ethylene vinyl acetate (EVA) as an encapsulant of the modules was performed to observe the IMC layer. The growth of IMC layer was evaluated using OM and FE-SEM for cross-sectional analysis and EDS for elemental mapping. Based on these results, we investigated the correlation between the IMC layer and output power of modules.

DWT 및 고주파 노이즈 성분 분석을 이용한 PV 시스템 인버터 노이즈 구분 및 직렬 아크 검출 (Separation Inverter Noise and Detection of DC Series Arc in PV System Based on Discrete Wavelet Transform and High Frequency Noise Component Analysis)

  • 안재범;조현빈;이진한;조찬기;이기덕;이진;임승범;류홍제
    • 전력전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.271-276
    • /
    • 2021
  • Arc fault detector based on multilevel DWT with analysis of high-frequency noise components over 100 kHz is proposed in this study to improve the performance in detecting serial arcs and distinguishing them from inverter noise in PV systems. PV inverters generally operate at a frequency range of 20-50 kHz for switching operation and maximum power tracking control, and the effect of these frequency components on the signal for arc detection leads to negative arc detection. High-speed ADC and multilevel DWT are used in this study to analyze frequency components above 100 kHz. Such high frequency components are less influenced by inverter noise and utilized to detect as well as separate DC series arc from inverter noise. Arc detectors identify the input current of PV inverters using a Rogowski coil. The sensed signal is filtered, amplified, and used in 800kSPS ADC and DWT analysis and arc occurrence determination in DSP. An arc detection simulation facility in UL1699B was constructed and AFD tests the proposed detector were conducted to verify the performance of arc detection and performance of distinction of the negative arc. The satisfactory performance of the arc detector meets the standard of arc detection and extinguishing time of UL1699B with an arc detection time of approximately 0.11 seconds.

딥러닝과 I-V 곡선을 이용한 태양광 스트링 고장 진단 (Fault Diagnosis of PV String Using Deep-Learning and I-V Curves)

  • 신우균;오현규;배수현;주영철;황혜미;고석환
    • Current Photovoltaic Research
    • /
    • 제10권3호
    • /
    • pp.77-83
    • /
    • 2022
  • Renewable energy is receiving attention again as a way to realize carbon neutrality to overcome the climate change crisis. Among renewable energy sources, the installation of Photovoltaic is continuously increasing, and as of 2020, the global cumulative installation amount is about 590 GW and the domestic cumulative installation amount is about 17 GW. Accordingly, O&M technology that can analyze the power generation and fault diagnose about PV plants the is required. In this paper, a study was conducted to diagnose fault using I-V curves of PV strings and deep learning. In order to collect the fault I-V curves for learning in the deep learning, faults were simulated. It is partial shade and voltage mismatch, and I-V curves were measured on a sunny day. A two-step data pre-processing technique was applied to minimize variations depending on PV string capacity, irradiance, and PV module temperature, and this was used for learning and validation of deep learning. From the results of the study, it was confirmed that the PV fault diagnosis using I-V curves and deep learning is possible.

See-through 형태의 투광형 태양광 모듈 제조를 위한 직렬접합형 스트랩 제조 기술 (Fabrication of Series Connected c-Si Solar Strap Cells for the See-through Type Photovoltaic Modules)

  • 박민준;윤성민;김민섭;이은비;전기석;정채환
    • Current Photovoltaic Research
    • /
    • 제11권4호
    • /
    • pp.114-117
    • /
    • 2023
  • Transparent Photovoltaic (PV) modules have recently been in the spotlight because they can be applied to buildings and vehicles. However, crystalline silicon (c-Si) solar modules, which account for about 90% of the PV module market, have the disadvantage of applying transparent PV modules due to their unique opacity. Recently, a see-through type PV module using a crystalline silicon solar strap has been developed. However, there is a problem due to a decrease in aesthetics due to the metal ribbon in the center of the see-through type PV module and difficulty bonding the metal ribbon due to the low voltage output of the strap. In this study, to solve this problem, we developed a fabrication process of series connected c-Si solar strap cells using the c-Si solar cells. We succeeded in fabricating a series connected strap with a width of 2-10 mm, and we plan to manufacture an aesthetic see-through type c-Si PV module.

PR제어기를 이용한 단상 계통 연계형 태양광 인버터 설계 (PR Controller Based Current Control Scheme for Single-Phase Inter-Connected PV Inverter)

  • 부우충기엔;성세진
    • 한국산학기술학회논문지
    • /
    • 제10권12호
    • /
    • pp.3587-3593
    • /
    • 2009
  • 최근 태양광 시스템에서는 기존의 태양광 시스템을 계통과 전원으로 상호 접속하는 것에 대한 연구에 관심이 모아지고 있다. 단상, 삼상 시스템에 관계없이 태양광 시스템에서 태양광 인버터는 계통연계 동작에 중요한 역할을 하기 때문에 전체 시스템에서 핵심요소로 고려된다. 태양광 인버터를 제어하기 위해서는 부하 전류 조절이 핵심요소 중 하나이다. 일반적으로 태양광 인버터에서 이용되는 PI 제어기는 정상상태 오차와 왜란에 취약하다는 단점을 가지고 있기 때문에 실제 시스템에 완벽하게 적용하기에는 무리가 있다. 특히, 이는 고주파영역에서의 PI와 PR 제어기의 성능을 비교해보면 알 수 있다. 이 논문에서 제시된 PR 제어기는 무한 이득을 교류 기본파 성분에 넣을 수 있기 때문에 PR 제어기는 회전좌표계의 PI 제어기에서 사용되는 디커플링 기법과 복잡한 변환 없이 제로 정상상태오차에 도달할 수 있다. 그렇기 때문에 이 논문에서는 PI 제어기를 대체하는 이론적 분석을 통해 PR 제어기를 설계하였다. 논문에 제시되어 있는 이론을 바탕으로 한 PR 제어기를 고정 소수점 연산방식의 32비트 마이크로컨트롤러 DSP320F2812를 기반으로 한 3kW 프로토타입 태양광 인버터에 적용, 평가하였다. 또한 태양광 인버터의 제어 성능을 시뮬레이션과 실험결과를 통하여 보여주고 검증하였다.