• Title/Summary/Keyword: PV cell modeling

Search Result 28, Processing Time 0.019 seconds

Test Results Grid Connection of 120 kW Power Generation System (120 kW급 태양광 발전시스템 설치 및 실 계통연계 운전 결과 평가)

  • Hwang, Jung-Hee;Ahn, Kyo-Sang;Lim, Hee-Cheon;Kim, Su-Chang;Kim, Sin-Sub
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.3
    • /
    • pp.338-346
    • /
    • 2006
  • In this paper, the test results of medium-size(120 kW class) PV system which was installed in the Taeahn thermal power station of Korea Western Power Co., Ltd., were summarized for developing the practical technology to applicate high voltage grid connection PV system. The 120 kW photovoltaic system which was consisted of 1,300 modules, PCS, and 150 kVA transformer station has been operated since Aug. 05, 2005. For verifying the modeling results of PV system, the operation data was compared with modeling results which was executed commercial PSCAD/EMTD and Psim tools. An equivalent circuit model of a solar cell has been also used for solar array modeling. A series of parameters required for array modeling have been estimated from general specification data of a solar module. A PWM voltage source inverter(VIS) and its current control scheme have been analyzed by using P&O (perturbation and Observation) MPPT algorithms technique.

The modeling of electrical characteristics with crack pattern in crystalline solar cell (결정질 태양전지 crack 패턴에 따른 전기적 특성 모델링)

  • Song, Young-Hun;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.239-244
    • /
    • 2011
  • In this paper, we analyzed the electrical characteristics with crack pattern in crystalline solar cell. crystalline solar cells with a thin substrate, even small shocks can be easily damaged. Before the module goes through many processes, because the solar cells are at risk of a crack. That occurred early in the PV module micro-crack is not easily detection by eye test or output test. Because the EL (Electroluminescence) device has been detected using. PV module is made by laminated of a variety of materials. By different properties of each material will affect the crack. For this reason, the crack will grow and affect the output. And We analyzed the three crack patterns in crystalline solar cell. A growth of cracks on crystalline solar cell was interpreted by analysing generated cracks on the PV modules. Based on this interpretation, an electrical output value was calculated by mathematical modeling on electrical output characteristic with each crack patterns.

  • PDF

PSCAD/EMTDC Based Modeling of a Grid-Connected Photovoltaic Generation System (PSCAD/EMTDC를 이용한 계통연계형 태양광발전시스템의 모델링)

  • Kim, Seul-Ki;Jeon, Jin-Hong;Kim, Eung-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.204-207
    • /
    • 2004
  • The paper proposes a simulation model of grid-connected photovoltaic generation system (PV system) using on PSCAD/EMTDC, a reliable power system and apparatus transient analysis program. A equivalent circuit model of a solar cell is used for modeling solar array. A series of parameters required for array modeling are deduced from general specification data of a solar module. A PWM voltage source inverter (VSI) model is presented and current control scheme is implemented for VSI control. A maximum power point tracking (MPPT) technique is applied for controlling the PV system. Simulation case study provides V-I and V-P characteristics of solar array and PV system control performance for irradiation changes.

  • PDF

Modeling of Solar-Powered Hydrogen Production System using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 수소제조용 태양광 발전 시스템의 모델링)

  • Lee Dong-Han;Park Minwon;Yu In-Keun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.116-121
    • /
    • 2006
  • This paper presents an effective modeling and simulation scheme of solar-powered hydrogen production system (PV-SPE: Photovoltaic Solid Polymer Electrolyte). Existing Hydrogen production technologies can produce vast amounts of hydrogen from hydrocarbons but emit large amounts of carbon dioxide (CO2) into the atmosphere. Advanced hydrogen production methods need development. Renewable technologies such as solar and wind need further development for hydrogen production to be more cost-competitive from other resources. In this paper, authors have focused on a renewable technology to move one step further toward commercial readiness of solar-powered hydrogen production system. Software (PSCAD/EMTDC) based model of PV-SPE system is studied for an effective simulation of hydrogen production system. Using the simulation results, an actual PV-SPE system is implemented to verify the simulation results by comparing them with actual values obtained from the data acquisition system.

The Study on MPPT Algorithm of PV Module by mismatched Solar Cell (태양전지의 출력 불균일에 대한 최대전력 알고리즘 연구)

  • Shim, Jae-Hwe;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Chul;Lee, Dong-Ha
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.143-148
    • /
    • 2011
  • This paper is about the study on MPPT algorithm of PV module where mismatched solar cells exist. PSIM simulation tool was used to verify new MPPT algorithm and PV module modeling was made. It was verified for the proposed algorithm to track the right MPP of PV boost converter under mismatched condition, which shows a shading effect in PV module. An experiment will be done soon using PV simulator for verification of the proposed algorithm.

  • PDF

The solar cell modeling using Lambert W-function (Lambert W 함수를 이용한 태양전지 모델링)

  • Bae, Jong-Guk;Kang, Gi-Hwan;Kim, Kyung-Soo;Yu, Gwon-Jong;Ahn, Hyung-Geun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.278-281
    • /
    • 2011
  • This system can predict the maximum output about all illumination levels so that the PV system designer can design the system having the best efficiency. For the output prediction exact about the solar cell, that is the device the basis most in the PV system, the basis has to be in order to try this way. The solution based on Lambert W-function are presented to express the transcendental current-voltage characteristic containing parasitic power consuming parameters like series and shunt resistances. A simple and efficient method for the extraction of a single current-voltage (I-V) curve under the constant illumination level is proposed. With the help of the Lambert W function, the explicit analytic expression for I is obtained. And the explicit analytic expression for V is obtained. This analytic expression is directly used to fit the experimental data and extract the device parameters. The I-V curve of the solar cell was expressed through the modeling using Lambert W-function and the numerical formula where there is the difficulty could be logarithmically expressed This method expresses with the I-V curve through the modeling using Lambert W-function which adds other loss ingredients to the equation2 as to the research afterward. And the solar cell goes as small and this I-V curve can predict the power penalty in the system unit.

  • PDF

The PV MPPT & Charge and Discharge Algorithm for the Battery Included Solar Cell Applications (배터리 내장형 초소형 태양광 장치용 PV MPPT 및 충방전 제어 알고리즘)

  • Kim, Seung-Min;Park, Bong-Hee;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Chul;Lae, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.69-75
    • /
    • 2013
  • To increase the efficiency of the photovoltaic, almost photovoltaic appliances are controlled by Maximum Power Point Tracking(MPPT). Existing most of the PV MPPT techniques have used power which multiplies sensed output current and voltage of the solar cell. However, these algorithms are unnecessarily complicated and too expensive for small and compact system. The other hand, the proposed MPPT technique is only one sensing of the MPPT converter's output current, so there is no need to insert another sensors of battery side. Therefore, this algorithm is simpler compared to the traditional approach and is suitable for low power solar system. Further, the novel proper charge/discharge algorithm for the battery with PV MPPT is developed. In this algorithm, there is CC battery charge mode and load discharge mode of the PV cell & battery dual. Also we design current control to regulate allowable current during the battery charging. The proposed algorithm will be applicable to battery included solar cell applications like solar lantern and solar remote control car. Finally, the proposed method has been verified with computer simulation.

Independent MPP Tracking Method of Hybrid Solar-Wind Power Conditioning Systems Using Integrated Dual-Input Single-PWM-Cell Converter Topology

  • Thenathayalan, Daniel;Ahmed, Ashraf;Choi, Byung-Min;Park, Jeong-Hyun;Park, Joung-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.790-802
    • /
    • 2017
  • This paper proposes the modeling and control strategy to track the MPPs of hybrid PV and Wind power systems, using a new dual input boost converter. The dual input power conditioning system with an independent MPPT control scheme is introduced with minimum number of circuit elements in order to reduce the switching loss, size and cost of the system. Since the operating conditions for the PV and Wind power systems are very distinct from each other, an efficient and superior control system is required to track the MPPs of both renewable sources with the use of a simply-structured single-ended single-inductor converter. The design of Power-Conditioning System (PCS) and detail control strategy are presented in this paper. To provide independent tracking of MPPs, a variable duty-cycle control strategy is employed for the wind system and a variable frequency strategy is employed for the PV system. Finally, the proposed dual-input converter for hybrid power conditioning system is implemented and the hardware test results are presented. From the hardware experiment, it is concluded that the proposed system successfully tracks the MPPs of both of the renewable power systems independently.

Validation of Generalized State Space Averaging Method for Modeling and Simulation of Power Electronic Converters for Renewable Energy Systems

  • Rimmalapudi, Sita R.;Williamson, Sheldon S.;Nasiri, Adel;Emadi, Ali
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.231-240
    • /
    • 2007
  • This paper presents an advanced modeling and simulation technique applied to DC/DC power electronic converters fed through renewable energy power sources. The distributed generation (DG) system at the Illinois Institute of Technology, which employs a phase-l system consisting of a photovoltaic-based power system and a phase-2 system consisting of a fuel cell based primary power source, is studied. The modeling and simulation of the DG system is done using the generalized state space averaging (GSSA) method. Furthermore, the paper compares the results achieved upon simulation of the specific GSSA models with those of popular computer aided design software simulations performed on the same system. Finally, the GSSA and CAD software simulation results are accompanied with test results achieved via experimentation on both, the PV-based phase-l system and the fuel cell based phase-2 power system.

Solar Cell Arrays Connection of Large Scale PV System (대규모 PV시스템의 태양전지 어레이 구성법)

  • Yu, Gwon-Jong;Song, Jin-Soo;Ro, Myong-Gun;Sung, Se-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.326-328
    • /
    • 1996
  • The 10kW or 1MW model of a photovoltaic array written in PSPICE is presented in this paper. A problem with this large scale centralized photovoltaic system is the decrease of power due to the resistance of cable connecting individual subarray with inverter. In this paper, we analyzed the relationship between the resistance of cable and subarray output power of 1MW photovoltaic system by the PSPICE modeling. As a result of simulation, we can proved that photovoltaic array output power is limitted by the resistance of cable.

  • PDF