• Title/Summary/Keyword: PV Tracking System

Search Result 281, Processing Time 0.038 seconds

A Novel Maximum Power Point Tracking Algorithm Considering the partially shaded in PV generating system (태양광 모듈의 미스매치를 고려한 새로운 최대전력 추종제어 알고리즘 연구)

  • Shim, Jae-Hwe;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Cheol;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.220-227
    • /
    • 2012
  • The maximum power point tracking(MPPT) is important part pf PV generating system, because of nonlinear characteristic of PV array. Many MPPT algorithms have been developed and proposed, but partially shaded in PV generating system, these algorithms can not track maximum power point. This paper explains the partially shaded conditions in the PV generating system and describes a novel new MPPT algorithm. To verify the proposed novel algorithm, PSIM simulation tool is used in this paper, and proper 3kW PV module modeling is made. As a result, the right maximum power point(11PP) of PV PCS can be tracked directly under shading effect for any mismatched condition in solar array.

ANN-based Maximum Power Point Tracking of PV System using Fuzzy Controller (퍼지 제어기를 이용한 PV 시스템의 ANN 기반 최대전력점 추적)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.27-32
    • /
    • 2015
  • A maximum power point tracking (MPPT) algorithm using fuzzy controller was considered. MPPT method was implemented based on the voltage and reference PV voltage value was obtained from Artificial Neural Network (ANN)-model of PV modules. Therefore, measuring only the PV module voltage is adequate for MPPT operation. Fuzzy controller is used to directly control dc-dc buck converter. The simulation results have been used to verify the effectiveness of the algorithm. The proposed method is compared with conventional PO(perturbation & observation), IC(Incremental Conductance) method. The nonlinearity and adaptiveness of fuzzy controller provided good performance under parameter variations such as solar irradiation.

Installation and Safety Evaluation of Tracking-type Floating PV Generation Structure (추적식 수상 태양광발전 구조물의 시공 및 안전성 평가)

  • Jang, Min-Jun;Kim, Sun-Hee;Lee, Young-Geun;Woo, Sang-Byock;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Pultruded glass fiber reinforced polymeric plastic (PFRP) and FRP member manufactured by sheet molding compound (SMC) have superior mechanical and physical properties compared with those of conventional structural materials. Since FRP has an excellent corrosion-resistance and high specific strength and stiffness, the FRP material may be highly appreciated for the development of floating-type photovoltaic (PV) power generation system. In this paper, advanced floating PV generation system made of PFRP and SMC is designed. In the design, it includes tracking solar altitude by tilting photovoltaic arrays and tracking solar azimuth by spinning structures. Moreover, the results of the finite element analysis (FEA) are presented to confirm stability of entire structure under the external loads. Additionally, installation procedure and mooring systems in the Hap-Cheon Dam are discussed and the measurement of strain under the actual circumstances is conducted for assuring stability of actually installed structures. Finally, by comparison with allowable stress, appropriate safety of structure is confirmed to operate the system.

Scaling Factor Design Based Variable Step Size Incremental Resistance Maximum Power Point Tracking for PV Systems

  • Ahmed, Emad M.;Shoyama, Masahito
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.164-171
    • /
    • 2012
  • Variable step size maximum power point trackers (MPPTs) are widely used in photovoltaic (PV) systems to extract the peak array power which depends on solar irradiation and array temperature. One essential factor which judges system dynamics and steady state performances is the scaling factor (N), which is used to update the controlling equation in the tracking algorithm to determine a new duty cycle. This paper proposes a novel stability study of variable step size incremental resistance maximum power point tracking (INR MPPT). The main contribution of this analysis appears when developing the overall small signal model of the PV system. Therefore, by using linear control theory, the boundary value of the scaling factor can be determined. The theoretical analysis and the design principle of the proposed stability analysis have been validated using MATLAB simulations, and experimentally using a fixed point digital signal processor (TMS320F2808).

A Study on Modeling of Tracking-Type Floating Photovoltaic System based on Matlab/Simulink (매틀랩/시뮬링크 기반 추적식 수상태양광 발전시스템의 모델링에 관한 연구)

  • Kim, In-Soo;Oh, Sung-Chan;Kim, Yang-Mo;Choi, Young-Kwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.805-811
    • /
    • 2015
  • Floating photovoltaic systems have been developed by the construction process such as design, construction, operation and management. Therefore, the power of floating photovoltaic systems has been calculated by using simple formulas and the optimal tracking interval is set by operation experience. But, flow characteristics have a decisive effect on it unlike land based PV systems. In this paper, a tracking floating photovoltaic system is modeled by using Matlab/simulink. The modeling for the floating photovoltaic system is verified through applying the flow characteristics based on actual operating data of 100㎾ class tracking floating photovoltaic.

Maximum Power Point Tracking Algorithm Development of Photovoltaic System by Fuzzy-Neuro Control (퍼지-뉴로 제어에 의한 PV 시스템의 MPPT 알고리즘 개발)

  • Jung, Chul-Ho;Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Jung, Byung-Jin;Park, Ki-Tae;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1140-1141
    • /
    • 2008
  • The paper proposes a novel control algorithm for tracking maximum power of PV generation system. The maximum power of PV array is determinated by a insolation and temperature. Prior considered the term in PV generation system is how maximum power point is accurately tracked. The paper proposes a Fuzzy-Neuro control algorithm so as to accurately track those maximum power points. The proposed control algorithm comprises the antecedence part of fuzzy rule and clustering method, multi-layer neural network in the consequent part. Fuzzy-Neuro has the advantages which are depicted both high performance and robustness in Fuzzy control and high adaptive control in Neural Network. Specially, it can show the outstanding control performance for parameter variations appling to non-linear character of PV array. In paper, the tracking speed and the accuracy prove the validity through comparing a proposed algorithm with a conventional one.

  • PDF

Real-Time Maximum Power Point Tracking Method Based on Three Points Approximation by Digital Controller for PV System

  • Kim, Seung-Tak;Bang, Tae-Ho;Lee, Seong-Chan;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1447-1453
    • /
    • 2014
  • This paper proposes the new method based on the availability of three points measurement and convexity of photovoltaic (PV) curve characteristic at the maximum power point (MPP). In general, the MPP tracking (MPPT) function is the important part of all PV systems due to their power-voltage (P-V) characteristics related with weather conditions. Then, the analog-to-digital converter (ADC) and low pass filter (LPF) are required to measure the voltage and current for MPPT by the digital controller, which is used to implement the PV power conditioning system (PCS). The measurement and quantization error due to rounding or truncation in ADC and the delay of LPF might degrade the reliability of MPPT. To overcome this limitation, the proposed method is proposed while improving the performances in both steady-state and dynamic responses based on the detailed investigation of its properties for availability and convexity. The performances of proposed method are evaluated with the several case studies by the PSCAD/EMTDC$^{(R)}$ simulation. Then, the experimental results are given to verify its feasibility in real-time.

Development of Neural Network Controller for Maximum Power Point Tracking of PV System (PV 시스템의 최대전력점 추적을 위한 신경회로망 제어기 개발)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.41-48
    • /
    • 2009
  • This paper presents an Neural Network(NN) controller for Maximum Power Point Tracking (MPPT) of PV supplied DC motor. A variation of solar irradiation is most important factor in the MPPT of PV system. That is nonlinear, aperiodic and complicated. NN was widely used due to easily solving a complex math problem. Proposed photovoltaic system consists of NN, DC-DC converter, DC motor and load(cf, pump). NN algorithm apply to DC-DC converter through an Adaptive control of Neural Network, calculates Converter-Chopping ratio using an Adaptive control of NN. The results of an Adaptive control of NN compared with the results of Converter-Chopping ratio which are calculated mathematical modeling and evaluate the proposed algorithm. The experimental data show that an adequacy of the algorithm was established through the compared data.

A Study on The PV System with Solar Tracking (태양광추적장치를 이용한 태양광발전시스템의 연구)

  • Oh, M.B.;Kang, S.Y.;Na, J.D.;Kim, B.C.;Cho, G.B.;Baek, H.L.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.717-719
    • /
    • 2005
  • This paper summarizes the results of these efforts by of offering the PV generation system with solar tracking. The status of PV generation system with solar tracking components and interconnection and effects are summarized. Hence this paper duscusses only points that might be useful for application.

  • PDF

MPPT Control Method comparison of the Stand-alone PV system (독립형 태양광 발전시스템의 MPPT 제어기법 비교)

  • Lee, Yong-Sik;Kim, Nam-In;Jeong, Sung-Won;Gim, Jae-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1386-1387
    • /
    • 2011
  • Maximum power point tracking(MPPT) techniques are used in photovoltaic systems to maximize the PV array output power by tracking continuously the maximum power point which depends on panels temperature and on irradiance conditions. In this paper, the controller of the stand-alone PV system applicable to various fields are designed. The improved P&O MPPT and traditional P&O MPPT method was applied. This improved algorithm consists of a constant perturbation with an step control which will make easier the controller PV power data acquisition process. This strategy of control has, in first time, been validated by PSIM simulations. After, been field test. The experimental results show that the improved P&O method increased the PV output power compare to traditional P&O method.

  • PDF