• Title/Summary/Keyword: PV시스템

Search Result 921, Processing Time 0.035 seconds

Relationships between Electric Power Generation of PV System and Heat Transfer which has Free Air Ventilation Duct (배면 통기유로를 가지는 태양광 발전시스템의 발전효율과 열전달의 관계)

  • Kim, Myoung-Jun;Chea, Gyu-Hoon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.625-631
    • /
    • 2010
  • Recently, the fossil energy and its related environmental problems (increase in PPM of $CO_2$) have been increased. Therefore, the interests on new and renewable energy have been increased as the one of the future industrial leading items. Among the renewable energy, the PV (Photo-Volatic) systems has particular merit at the electricity can be directly acquired from the sun. Usually in PV systems, the ambient temperature and air velocity have strongly related on the effect of power generation of PV panel. So the purpose of this study is to clarify relationships between power generation of PV panel and outer environmental factors like temperature and air velocity. And these types of applications using natural energy are strongly affected by the climate conditions. Therefore the data of this study were re-arranged in terms of non-dimensional correlations.

A study on the Application of Roof Integrated Photovoltaic System - Focused on the Optimal Length Ratio Calculation of System - (지붕 일체형 태양광 발전 시스템의 응용에 관한 연구 - 시스템의 최적길이비 산정을 중심으로 -)

  • Kim, Eui-Jong;Choi, Won-Ki;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.2
    • /
    • pp.27-33
    • /
    • 2005
  • To improve the performance of the top-positioning space in buildings, we suggested the environment-friendly system integrating various design techniques in the previous paper. This work discussed to calculate the length of PV considering a part of metallic radiators for radiative cooling, an critical element of the whole system, for shading not to prevent the PV on roof from generating electricity. In the process of calculating the shading area, we used the geometrical relationship between the sun-rays and the variable roof. For general applications, we utilized DL, the ratio of the length of PV and that of metallic radiator on roof, as a design factor, and then used the maximum insolation and the specific insolation($200W/m^2$) to decide the distance off the axis of rotation. As a result, for DL, we found out the reasonable value of 1.0 with full covering, 1.2 with 90%, and 2.0 with 70% in PV covering.

FPGA based POS MPPT control for a small scale charging system of PV-nickel metal hydride battery (FPGA를 이용한 소형 태양광 발전 니켈 수소 전지 충전 시스템의 POS MPPT 제어)

  • Lee, Hyo-Geun;Seo, Hyo-Ryong;Kim, Gyeong-Hun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1306-1307
    • /
    • 2011
  • Recently, the small scale photovoltaic (PV) electronic devices are drawing attention as the upcoming PV generation system. The PV system is commonly used in small scale PV applications such as LED lighting and cell phone. This paper proposes photovoltaic output sensorless (POS) maximum power point tracking (MPPT) control for a small scale charging system of PV-nickel metal hydride battery using field-programmable gate array (FPGA) controller. A converter is connected to a small scale PV cell and battery, and performs the POS MPPT at the battery terminal current instead of being at the PV cell output voltage and current. The FPGA controller and converter operate based on POS MPPT method. The experimental results show that the nickel metal hydride battery is charged by the maximum PV output power.

  • PDF

Diagnosis Method of Output Power Lowering of PV System by Using Kalman Filter Algorithm (Kalman Filter 알고리즘을 이용한 태양광 발전 시스템의 출력저하 진단법)

  • Kang, Byung-Kwan;Kim, Seung-Tak;Lee, Hyun-Gu;Bae, Sun-Ho;Park, Jung-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1537-1546
    • /
    • 2011
  • The photovoltaic(PV) generation system have recently become widely used to solve the environmental problems and running out of fossil fuels. However, the study on maintenance is inadequate for PV system. This paper proposes the novel diagnosis method of output power decline to maintain the normal output performance of PV array. The diagnosis method used the proportional relation of irradiation-output current(S-I) of PV array at maximum power point(MPP). And, first order polynomial using the relation is proposed to easily apply PV system. To estimate the relation in case of separation of PV array producer and diagnosis system producer. Kalman Filter algorithm is also proposed at 30.2kW grid-connected PV system. Then, the performance of diagnosis method is evaluated using the hardware tests as well as the simulation.

FPGA based POS MPPT Control for a Small Scale Charging System of PV-nickel Metal Hydride Battery (FPGA를 이용한 소형 태양광 발전 니켈 수소 전지 충전 시스템의 POS MPPT 제어)

  • Lee, Hyo-Guen;Seo, Hyo-Ryong;Kim, Gyeong-Hun;Park, Min-Won;Yu, In-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.80-84
    • /
    • 2012
  • Recently, the small scale photovoltaic (PV) electronic devices are drawing attention as the upcoming PV generation system. The PV system is commonly used in small scale PV applications such as LED lighting and cell phone. This paper proposes photovoltaic output sensorless (POS) maximum power point tracking (MPPT) control for a small scale charging system of PV-nickel metal hydride battery using field-programmable gate array (FPGA) controller. A converter is connected to a small scale PV cell and battery, and performs the POS MPPT at the battery terminal current instead of being at the PV cell output voltage and current. The FPGA controller and converter operate based on POS MPPT method. The experimental results show that the nickel metal hydride battery is charged by the maximum PV output power.

Evaluation on Calculation Algorithms for Polycrystalline Silicon PV Module Surface Temperatures by Varying External Factors during the Summer Period (다결정 실리콘 PV모듈의 하절기 표면온도 예측을 위한 알고리즘 검토 및 외부인자별 영향 평가)

  • Jung, Dong-Eun;Yeom, Gyuhwan;Lee, Chanuk;Do, Sung-Lok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.177-184
    • /
    • 2019
  • Recently, electric power usages and peak loads from buildings are increasing due to higher outdoor air temperatures and/or abnormal climate during the summer period. As one of the eco-friendly measures, a renewable energy system has been received much attention. Particularly, interest on a photovoltaic (PV) system using solar energy has been rapidly increasing in a building sector due to its broad applicability. In using the PV system, one of important factors is the PV efficiency. The normal PV efficiency is determined based on the STC(Standard Test Condition) and the NOCT(Nominal Operating Cell Temperature) performance test. However, the actual PV efficiency is affected by the temperature change at the module surface. Especially, higher module temperatures generally reduce the PV efficiency, and it leads to less power generation from the PV system. Therefore, the analysis of the relation between the module temperature and PV efficiency is required to evaluate the PV performance during the summer period. This study investigates existing algorithms for calculating module surface temperatures and analyzes resultant errors with the algorithms by comparing the measured module temperatures.

Simulator Development for Stand Alone PV System Design (태양광발전 시스템 설계를 위한 시뮬레이터 개발)

  • Kang, S.Y.;Kim, K.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.383-388
    • /
    • 2003
  • The stand alone PV system's stability and cost is influenced by a design method, as its application products are various. In order to systematize the the stand alone PV system's design method based on experience, this research settled the capacity computation method of PV module and battery and developed a simulator. And Its characteristic is confirmed by applying to PV street lamp design.

  • PDF

Multi-Central System for Large Scale PV Power Generation (대용량 태양광 발전용 멀티센트럴 시스템)

  • Park, Jong-Hyoung;Ko, Kwang-Soo;Kim, Heung-Geun;Nho, Eui-Cheol;Chun, Tae-Won
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.427-432
    • /
    • 2012
  • This paper proposes efficient operation method of PV system consisted of multi-central which is suitable for large scale system. The multi-central system used switch at a DC-link and applied proposed algorithm can improve the efficiency and the reliability on the existing system. This algorithm, with advantage of Multi-Central system can minimize the effect of different characteristic of each PV array due to a shadow or damaged PV cell. Each system is analysed and maximum power point tracking control, DC-link voltage control and output current control is used commonly. The validity is verified after comparing of the existing system and proposed system by simulation.

  • PDF

A Study on General Characteristics of Wind and Solar Power System, Automatic Tail Safety Controller and DC-DC Converter (풍력 및 태양광 발전시스템의 일반 특성과 강풍제어기 및 DC-DC컨버터에 대한 연구)

  • Choi, Jung-Hoon;Park, Sung-Jun;Moon, Chae-Joo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.109-116
    • /
    • 2005
  • Wind power and photovoltaic(PV) systems are getting into the spotlight as substitute energy. But problem is happened stability by speed change of wind and the power output of the sun's ray. The power output amount according to velocity of wind power system. System breakdown can happen at change of sudden velocity, typhoon and night. This paper shows a automatic tail safety brake controller based on feedback control using wind velocity. The operation of automatic tail safety controller verified by manual test. PV system is a energy change system by temperature of sun's ray and cell. Maximum power point tracking(MPPT) is used in PV systems to maximize the photovoltaic array output power. In existed PV system is low output and changeable DC voltage for boost and filtering the buck-boost converter use. But, this paper established deformed DC-DC converter. Changed Buck-boost converter's unlined output current to line output current using DC-DC converter. This is effect that reduce ripple of output current. Proved through an output waveform comparison experiment. Finally, tail safety brake controller is established to wind turbine system for stability elevation and DC-DC converter is established on PV system for stability output.