• 제목/요약/키워드: PV(Photovoltaic) Panels

검색결과 58건 처리시간 0.027초

독립형 태양광 발전시스템의 MPPT 제어기법 특성비교 (Comparison of MPPT Control Method Characteristic for Stand-alone PV System)

  • 이용식;김남인;정성원;김재현
    • 전기학회논문지
    • /
    • 제61권1호
    • /
    • pp.75-79
    • /
    • 2012
  • Maximum power point tracking(MPPT) techniques are used in photovoltaic systems to maximize the PV array output power by tracking continuously the maximum power point which depends on panels temperature and on irradiance conditions. This paper proposes a variable step size MPPT algorithm which can improve the MPPT speed and accuracy. Depending on insolation and temperature, the MPPT controller gives optimized step size. The effectiveness of the proposed system is verified thorough PSIM simulation and experiments on a 50[W] prototype. The experimental results confirm that the PV power of the improved P&O method is higher than that of the traditional P&O method.

복수의 스트링을 가지는 PV 패널에 대응 가능한 차동 전력 조절기의 동작 알고리즘 (Control Algorithm of Differential Power Processing Module for Power Generation from Photovoltaic Panels Including Multiple Strings)

  • 김근욱;김민아;정지훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2020년도 전력전자학술대회
    • /
    • pp.10-12
    • /
    • 2020
  • 차동 전력 조절기 시스템은 PV 모듈의 부분 음영으로 인해 전체 발전량이 감소하는 현상을 방지하기 위해서 사용한다. 기존의 차동 전력 조절기는 PV 패널과 바이패스 다이오드를 연결하여 구성한 PV 스트링당 한 개의 전력변환 장치가 필요하므로, 전력변환 장치의 개수가 증가하고 전력 시스템의 설치비용이 증가한다. 본 논문에서는 복수의 스트링에 단일 전력변환장치를 사용할 수 있는 차동 전력 조절기 모듈의 구조와 동작 알고리즘을 제안한다. 차동 전력 조절기에 대한 동작 알고리즘을 통해 다양한 부분 음영 조건 시에도 기존의 직렬 연결방식이나 차동 전력 조절 방식에 비하여 최대 발전량을 유지할 수 있다. 제안하는 차동 전력 조절기의 동작 알고리즘은 Matlab/Simulink 시뮬레이션을 통해 성능을 검증하였다.

  • PDF

반사판을 이용한 고정식 집속형 태양광.열복합패널의 성능평가 (Performance Evaluation of Fixed-concentrated Photovoltaic/Thermal Hybrid Panel using Reflector)

  • 서유진;허창수
    • 한국태양에너지학회 논문집
    • /
    • 제25권4호
    • /
    • pp.85-92
    • /
    • 2005
  • One of the most effective methods for utilizing solar energy is to combine thermal solar and optical energy simultaneously using a hybrid panel. Many systems using various kinds of photovoltaic panels have already been constructed. But utilizing solar energy by means of a hybrid panel with concentrator has not been to be attempted yet. Normally if sunlight is directed on the solar cell, and there is no increase in temperature, the absorption energy of each cell will increase per unit area. In a silicon solar cell. however, cell conversion efficiency decreases according to the increasing temperature. Therefore, to maintain cell conversion efficiency under normal condition, it is necessary to keep the cell at operating temperature. we design and make new hybrid panel with cooling system to prevent increasing of temperature on cell, collect effectively thermal energy. We compared performance of new hybrid panel with PV module and thermal panel. We also evaluated conversion efficiency, electric power and thermal capacity and confirmed cooling effect from thermal absorption efficiency.

건물일체형 태양광발전 시스템의 발전성능 분석 (A Study on generation characteristics of building integrated Photovoltaic system)

  • 박재완;신우철;김대곤;윤종호
    • 한국태양에너지학회 논문집
    • /
    • 제33권3호
    • /
    • pp.75-81
    • /
    • 2013
  • In this study, we analyze the performance characteristics of Building Integrated Photovoltaic (BIPV) system of K Research Building which was designed with the aim of zero carbon building. In addition, BIPV system, which is consist of three modules; G to G(Glass to Glass), G to T(Glass to Tedlar/Crystal) and Amorphous, has 116.2kWp of total capacity, and is applied to wall, window, atrium and pagora on roof. Therefore, in this paper, our research team analyzed BIPV yield and generation characteristic. BIPV yield was 112,589kWh a year from January 2012 to December 2012. And after applying PV panels on the building, the power from the best setting angle, $30^{\circ}$, of panel was compared. In addition, when the PV was attached practically on the building, the generation power was analyzed. BIPV modules in this study the relationship between module setting angle, type of modules ect. and power characteristics plans to identify.

The Development of an Intelligent Home Energy Management System Integrated with a Vehicle-to-Home Unit using a Reinforcement Learning Approach

  • Ohoud Almughram;Sami Ben Slama;Bassam Zafar
    • International Journal of Computer Science & Network Security
    • /
    • 제24권4호
    • /
    • pp.87-106
    • /
    • 2024
  • Vehicle-to-Home (V2H) and Home Centralized Photovoltaic (HCPV) systems can address various energy storage issues and enhance demand response programs. Renewable energy, such as solar energy and wind turbines, address the energy gap. However, no energy management system is currently available to regulate the uncertainty of renewable energy sources, electric vehicles, and appliance consumption within a smart microgrid. Therefore, this study investigated the impact of solar photovoltaic (PV) panels, electric vehicles, and Micro-Grid (MG) storage on maximum solar radiation hours. Several Deep Learning (DL) algorithms were applied to account for the uncertainty. Moreover, a Reinforcement Learning HCPV (RL-HCPV) algorithm was created for efficient real-time energy scheduling decisions. The proposed algorithm managed the energy demand between PV solar energy generation and vehicle energy storage. RL-HCPV was modeled according to several constraints to meet household electricity demands in sunny and cloudy weather. Simulations demonstrated how the proposed RL-HCPV system could efficiently handle the demand response and how V2H can help to smooth the appliance load profile and reduce power consumption costs with sustainable power generation. The results demonstrated the advantages of utilizing RL and V2H as potential storage technology for smart buildings.

Design and Implementation of Modified Current Source Based Hybrid DC - DC Converters for Electric Vehicle Applications

  • Selvaganapathi, S.;Senthilkumar, A.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권2호
    • /
    • pp.57-68
    • /
    • 2016
  • In this study, we present the modern hybrid system based power generation for electric vehicle applications. We describe the hybrid structure of modified current source based DC - DC converters used to extract the maximum power from Photovoltaic (PV) and Fuel Cell system. Due to reduced dc-link capacitor requirement and higher reliability, the current source inverters (CSI) better compared to the voltage source based inverter. The novel control strategy includes Distributed Maximum Power Point Tracking (DMPPT) for photovoltaic (PV) and fuel cell power generation system. The proposed DC - DC converters have been analyzed in both buck and boost mode of operation under duty cycle 0.5>d, 0.5<d<1 and 0.5<d for capable electric vehicle applications. The proposed topology benefits include one common DC-AC inverter that interposes the generated power to supply the charge for the sharing of load in a system of hybrid supply with photovoltaic panels and fuel cell PEM. An improved control of Direct Torque and Flux Control (DTFC) based induction motor fed by current source converters for electric vehicle.In order to achieve better performance in terms of speed, power and miles per gallon for the expert, to accepting high regenerative braking current as well as persistent high dynamics driving performance is required. A simulation model for the hybrid power generation system based electric vehicle has been developed by using MATLAB/Simulink. The Direct Torque and Flux Control (DTFC) is planned using Xilinx ISE software tool in addition to a Modelsim 6.3 software tool that is used for simulation purposes. The FPGA based pulse generation is used to control the induction motor for electric vehicle applications. FPGA has been implemented, in order to verify the minimal error between the simulation results of MATLAB/Simulink and experimental results.

포토센서를 이용한 태양위치 추적기의 성능분석에 관한 연구 (Performance Evaluation of a Solar Tracking PV System with Photo Sensors)

  • 정병호;조금배;이강연
    • 조명전기설비학회논문지
    • /
    • 제27권5호
    • /
    • pp.67-73
    • /
    • 2013
  • The conversion of solar radiation into electrical energy by Photo-Voltaic (PV) effect is a very promising technology, being clean, silent and reliable, with very small maintenance costs and small ecological impact. The output power produced by the PV panels depends strongly on the incident light radiation. The continuous modification of the sun-earth relative position determines a continuously changing of incident radiation on a fixed PV panel. The point of maximum received energy is reached when the direction of solar radiation is perpendicular on the panel surface. Thus an increase of the output energy of a given PV panel can be obtained by mounting the panel on a solar tracking device that follows the sun trajectory. Tracking systems that have two axes and follow the sun closely at all times during the day are currently the most popular. This paper presents research conducted into the performance of Solar tracking system with photosensors. The results show that an optimized dual-axis tracking system with photosensor performance and analysis. From the obtained results, it is seen that the sun tracking system improves the energy and energy efficiency of the PV panel.ti-junction CPV module promises to accelerate growth in photovoltaic power generation.

Implementation of a Switched PV Technique for Rooftop 2 kW Solar PV to Enhance Power during Unavoidable Partial Shading Conditions

  • Kumar, B. Praveen;Winston, D. Prince;Christabel, S. Cynthia;Venkatanarayanan, S.
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1600-1610
    • /
    • 2017
  • We propose maximum power extraction from a rooftop solar photovoltaic (PV) array during partial shading conditions. Partial shading is unavoidable during power extraction from rooftop PV systems due to nearby tall buildings (construction of additional floors) and trees (growth of trees). Many reconfiguration techniques can be used to extract maximum power in partial shading conditions, but in several cases, the real maximum power output is not achieved. In this study, a new switched PV technique is proposed to enhance the power output. The proposed technique is simple to use and more cost effective than other reconfiguration techniques. Therefore, it is suitable for rooftop applications. The power output of the proposed technique is compared with that of existing techniques with similar shading patterns. Eight panels with ratings of 250 watts (2 kW) each are used for testing. MATLAB simulation and hardware verification are done for the proposed and existing techniques. The proposed technique is implemented on a $4{\times}2$ PV array, although it can be extended to a number of arrays.

대전지역 건물음영을 고려한 PV 최적각도 산정 (Estimation of Optimal Angle for PV Panels Considering Building's Shadow in Daejeon)

  • 이정태;김현구;강용혁;윤창열;김창기;김진영;김보영
    • 한국태양에너지학회 논문집
    • /
    • 제40권3호
    • /
    • pp.43-52
    • /
    • 2020
  • By blocking irradiance, shadows cast by high-rise buildings in urban areas can reduce the power generation efficiency of PV panels installed on low-rise buildings. As the conventionally installed PV panel is not suitable for the urban environment, which is unfavorable for power generating, a more radical solution is required. This study aims to help solve this problem by estimating the optimal PV panel angle. Using the proposed method, the optimal PV angle was calculated by considering shadows that could be cast by nearby buildings throughout the year, and the correlation between solar shading and elevation angle was discovered based on the calculated data.

고층 빌딩에 적용되는 빌딩통합형 태양광패널 효율성 개선방안 (Efficiency Improvement for Building Integrated Photovoltaic Applied to High-rise Building)

  • 이도현;안인석
    • 한국산업융합학회 논문집
    • /
    • 제25권1호
    • /
    • pp.71-78
    • /
    • 2022
  • With the advent of cutting-edge technology, renewable energy is significantly considered as alternative resources to supply electric power. However, many barriers such as energy intermittency, high initial installation cost, and low-efficiency generation challenged building new infrastructure with clean energy. Efforts reducing greenhouse gas emissions and reliance on fossil fuels resulted in the decentralization of power generation like distributed energy resource (DER). This paper is to introduce and evaluate the feasibility of building-integrated photovoltaics (BIPV) in a high-rise building in Ulsan. To optimize BIPV, a variety of methods to minimize efficiency decrease and maximize electric power generation after installing BIPV on the building's facade are suggested. The variables causing power losses are analyzed. By utilizing System Advisor Model (SAM), actual power generated from solar panels is measured by Thin-film PV, Mono-crystalline PV, and Poly-crystalline PV.