• Title/Summary/Keyword: PV(Photo Voltaic)

Search Result 50, Processing Time 0.029 seconds

The First High Solar Concentrator System Performance Test in Korea

  • Chung, Kyung-Yul;Kang, Sung-Won;Kim, Yong-Sik;Sim, Chang-Ho;Jeong, Nam-Young;Park, Chang-Dae;Ryu, Keel-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.876-884
    • /
    • 2012
  • The worldwide CPV(Concentrated Photo Voltaic) market has been increased rapidly due to the increase in large-scale PV(Photo Voltaic) plants which are situated in sun-rich areas with either a Mediterranean or equatorial-type climate. CPV systems are arguably some of the most important devices in the production of electricity within regions with a sun-rich climate, particularly those which benefit from abundant direct solar irradiation. We have developed a 500X CPV module with rated power of 170Wp. The CPV module must satisfy the constraint of having a sensitive tracking accuracy due to the limited tolerance of the acceptance angle in intrinsic optical design. In this study, the module's acceptance angle used was designed with a tolerance angle of ${\pm}1^{\circ}$ in the secondary optics design. In general, non-concentrated module type 2-axis trackers have a tolerance angle larger than ${\pm}1^{\circ}$ due to standard silicon-type modules which are insensitive to the tracking accuracy of the sun. They have a tolerance angle of ${\pm}2{\sim}4^{\circ}$, which fails to exert a significant influence on the performance of the module. This paper provides a study of an experimental variation of the efficiency of the CPV module in terms of its tracking accuracy. Also, the performance of the module is studied from the perspective of temperature and direct irradiation.

Separation Inverter Noise and Detection of DC Series Arc in PV System Based on Discrete Wavelet Transform and High Frequency Noise Component Analysis (DWT 및 고주파 노이즈 성분 분석을 이용한 PV 시스템 인버터 노이즈 구분 및 직렬 아크 검출)

  • Ahn, Jae-Beom;Jo, Hyun-Bin;Lee, Jin-Han;Cho, Chan-Gi;Lee, Ki-Duk;Lee, Jin;Lim, Seung-Beom;Ryo, Hong-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.271-276
    • /
    • 2021
  • Arc fault detector based on multilevel DWT with analysis of high-frequency noise components over 100 kHz is proposed in this study to improve the performance in detecting serial arcs and distinguishing them from inverter noise in PV systems. PV inverters generally operate at a frequency range of 20-50 kHz for switching operation and maximum power tracking control, and the effect of these frequency components on the signal for arc detection leads to negative arc detection. High-speed ADC and multilevel DWT are used in this study to analyze frequency components above 100 kHz. Such high frequency components are less influenced by inverter noise and utilized to detect as well as separate DC series arc from inverter noise. Arc detectors identify the input current of PV inverters using a Rogowski coil. The sensed signal is filtered, amplified, and used in 800kSPS ADC and DWT analysis and arc occurrence determination in DSP. An arc detection simulation facility in UL1699B was constructed and AFD tests the proposed detector were conducted to verify the performance of arc detection and performance of distinction of the negative arc. The satisfactory performance of the arc detector meets the standard of arc detection and extinguishing time of UL1699B with an arc detection time of approximately 0.11 seconds.

Development of Energy Storage System Combined with Solar System and Superconducting Magnet (초전도 마그넷을 이용한 태양광에너지 저장장치 개발)

  • Kim, Dae-Wook;Chung, Yoon-Do;Yoon, Yong-Soo;Kim, Tae-Jung;Kim, Hyun-Ki;Ko, Kae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.888-889
    • /
    • 2011
  • As new one of superconducting power supplies, we proposed an HTS flux pump utilized a solar energy system. As an eternal electric energy can be converted by the solar system, the solar energy system is promisingly applied as an energy source in the power applications. A solar energy system is comprised of solar panel, photo-voltaic (PV) controller, converter and battery. The HTS flux pump consists of an electromagnet, two thermal heaters and a Bi-2223 magnet. In this paper, we describe the possibility the fusion technology between superconducting power supply and solar energy system. As a fundamental step, the fabrication, structure and experimental results are explained.

  • PDF

Test and simulation of High-Tc superconducting power charging system for solar energy application

  • Jeon, Haeryong;Park, Young Gun;Lee, Jeyull;Yoon, Yong Soo;Chung, Yoon Do;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.18-22
    • /
    • 2015
  • This paper deals with high-Tc superconducting (HTS) power charging system with GdBCO magnet, photo-voltaic (PV) controller, and solar panels to charge solar energy. When combining the HTS magnet and the solar energy charging system, additional power source is not required therefore it is possible to obtain high power efficiency. Since there is no resistance in superconducting magnet carrying DC transport current the energy losses caused by joule heating can be reduced. In this paper, the charging characteristics of HTS power charging system was simulated by using PSIM. The charging current of HTS superconducting power charging system is measured and compared with the simulation results. Using the simulation of HTS power charging system, it can be applied to the solar energy applications.

Energy Flexibility for More Wider Uses (소비자 중심의 태양광 에너지 역할의 다변화)

  • Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Yoon, Soon-Gil
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.15-16
    • /
    • 2011
  • In this paper, I suggested the energy flexibility for photovoltaic energy. The cost for PV is surely high. But renewable energy is an one of the key solution for next energy resource. The latest technology needs more electricity. So many people are carrying more mobile charge in their batteries. Looking at the poor country people and nation, it is necessary to supply and share the advanced energy resources like photo voltaic. So in this open seminary I want to share the idea for this theme. The detail discussion will be shown in the following paper.

  • PDF

Design and Implementation of Solar PV for Power Quality Enhancement in Three-Phase Four-Wire Distribution System

  • Guna Sekar, T.;Anita, R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.75-82
    • /
    • 2015
  • This paper presents a new technique for enhancing power quality by reducing harmonics in the neutral conductor. Three-Phase Four-Wire (3P4W) system is commonly used where single and three phase loads are connected to Point of Common Coupling (PCC). Due to unbalance loads, the 3P4W distribution system becomes unbalance and current flows in the neutral conductor. If loads are non-linear, then the harmonic content of current will flow in neutral conductor. The neutral current that may flow towards transformer neutral point is compensated by using a series active filter. In order to reduce the harmonic content, the series active filter is connected in series with the neutral conductor by which neutral and phase current harmonics are reduced significantly. In this paper, solar PV based inverter circuit is proposed for compensating neutral current harmonics. The simulation is carried out in MATLAB/SIMULINK and also an experimental setup is developed to verify the effectiveness of the proposed method.

DC Offset Current Compensation Method of Transformeless Fuel Cell/PV PCS (무변압기형 연료전지/태양광용 PCS의 직류분 보상기법)

  • Park, Bong-Hee;Kim, Seung-Min;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Chul;Lee, Dong-Ha;Lee, Young-Kwon
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.92-97
    • /
    • 2013
  • This paper proposes DC offset current compensation method of transformerless fuel cell/PV PCS. DC offset current is generated by the unbalanced internal resistance of the switching devices in full bridge topology. The other cause is the sensitivity of the current sensor, which is lower than DSP in resolution. If power converter system has these causes, the AC output current in the inverter will generate the DC offset. In case of transformerless grid-connected inverter system, DC offset current is fatal to grid-side, which results in saturating grid side transformer. Several simulation results show the difficulties of detecting DC offset current. Detecting DC offset current method consists of the differential amplifiers and PWM is compensated by the output of the Op amp circuit with integrator controller. PSIM simulation verifies that the proposed method is simpler and more effective than using low resolution current sensor alone.

Technology of single-axis solar tracking system and power generation increase (단축식 태양광 추적장치의 설계와 발전량 증대기술)

  • LEE, Jae-Jin;Lee, Kyo-Beum;Jeong, Kyu-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.212-217
    • /
    • 2020
  • The PV power generation system is a comprehensive system that transmits the power generated through a PV panel to a grid connection and is composed of a solar panel, a structure, and an inverter grid connection system. One technology to increase the amount of power generated involves changing the incident angle of sunlight. This study examined the structure and control of a single-axis tracking PV system that increases the amount of power generated by changing the incident angle. The core content is a single-axis control system and technology configured to rotate the solar structure in the east-west direction around the north-south axis. A solar structure that follows the sun from sunrise to sunset in the east-west direction needs to secure structural stability and solar tracking control performance. A single-axis tracking system can generate up to 25% more power.

Balcony window style photo-voltaic(PV) system design by considering resident's residential time rate - Focus on the design of apartment building balcony window PV system and it's performance - (거주자 주택 점유율을 고려한 공동주택 발코니 PV시스템 디자인 - 공동주택의 발코니 PV시스템 디자인과 성능검증 중심으로 -)

  • Chin, Kyung-Il
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.5
    • /
    • pp.101-110
    • /
    • 2009
  • In case of general residential house, photovoltaic can be installed at roof, wall, and any other places. But, in case of apartment building, there has not enough roof space to install photovoltaic panels to supply enough electricity. Actually, apartment building roof and facade wall (exclude the balcony window space) is not enough space to produce and supply the electricity to residents by installing PV panel. Generally, the space of facade balcony with windows in facade wall at apartment building occupied about $70{\sim}80%$, in all facade space. So, if we could use the balcony and windows space in facade as PV to generating electricity, there could contribute the energy saying. But, PV cell is opacify. So if it installed at front window area in apartment building, residents may have displeasure for that opacity character. But the other hand, residents are not always in house especially in day time that is exactly good time for generating electricity by PV. If we can use PV at the facade balcony with window without collusion of resident's displeasure, there have good attraction to using sustainable energy. Hence, this study suggests the design of facade balcony window style PV by considering resident's living pattern in apartment building. The methods of this study are as follows. At first, this study surveyed to the residents about residential time in their home and asked user demand by Delphi survey. At second, this study designed balcony open style PV system which oriented to the user demand. At third, this study tests designed result performance by computer simulation that compared design result with old design. As a result, For the purpose of satisfying the resident demand, there designed sliding window style which slide the several door systems to the one side. That would be make balcony absolute open scenery to the residents. Hence, the designed system performance results were as follows. When we compare the small apartment and large apartment, smaller one has good performance than larger one. Because resident's residential time characteristic. And that has more good electronic performance than vertical style that is similar to roof style.

An Implementation of Realtime Remote-Monitoring System for Distributed Photovoltaic Power Plants (분산형 태양광 발전 시스템을 위한 실시간 원격 모니터링 시스템 구현)

  • Kim, Chang-Joon;Kim, Jung-Ki;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2450-2456
    • /
    • 2015
  • In this paper, we propose a real-time remote monitoring system for distributed solar power generation system. The proposed system consists of PVC, UTC, OTC and monitoring server. PVC collects the operational information from the PV's inverter via serial interface. The sensing data is transmitted to the server by wireless communications and stored in the DB server. The PV's status is monitored via UTC, and the operating of PVC and UTC are managed by OTC. In addition, by providing information about the power generated by PV system and failure diagnosis in real time, the proposed system shows the possibility of reducing the maintenance costs and improved failure recovery time.