• Title/Summary/Keyword: PUFAs

Search Result 73, Processing Time 0.022 seconds

Effects of diet and castration on fatty acid composition and volatile compounds in the meat of Korean native black goats

  • Jinwook Lee;Hye-Jin Kim;Sung-Soo Lee;Kwan-Woo Kim;Dong-Kyo Kim;Sang-Hoon Lee;Eun-Do Lee;Bong-Hwan Choi;Farouq Heidar Barido;Aera Jang
    • Animal Bioscience
    • /
    • v.36 no.6
    • /
    • pp.962-972
    • /
    • 2023
  • Objective: This study determined the effects of dietary treatments and castration on meat quality, fatty acids (FAs) profiles, and volatile compounds in Korean native black goats (KNBG, Capra hircus coreanae), including the relationship between the population of rumen microbiomes and meat FA profiles. Methods: Twenty-four KNBG (48.6±1.4 kg) were randomly allocated to one of four treatments arranged into a 2×2 factorial structure. The factors were dietary forage to concentrate ratio (high forage [HF, 80:20] and low forage [LF, 20:80]), and a castration treatment (castration [CA] vs non-castration [NCA]). Results: Among meat quality traits, the CA group exhibited a higher percentage of crude fat and water holding capacity (p<0.05). The profiles of the saturated fatty acid (SFA) in meat sample derived from CA KNBG showed a significantly lower percentage compared to NCA individuals, due to the lower proportion of C14:0 and C18:0. Feeding a high-forage diet to KNBG increased the formation of C18:1n7, C18:3n3, C20:1n9, C22:4n6 in meat, and polyunsaturated fatty acid (PUFA) profiles (p<0.05). Consequently, the n6:n3 ratio declined (p<0.05). There was an interaction between dietary treatment and castration for formation of C20:5n3 (p<0.05), while C18:1n9, C22:6n3, monounsaturated fatty acid (MUFA) and the MUFA:SFA ratio were influenced by both diet and castration (p<0.05). Nine volatile compounds were identified and were strongly influenced by both dietary treatments, castration (p<0.05), and their interaction. In addition, principal component analysis (PCA) revealed distinctly different odor patterns in the NCA goats fed LF diets. Spearman correlation analysis showed a high correlation between rumen bacteria and meat PUFAs. Conclusion: These results suggest the essential effects of the rumen microbial population for the synthesis of meat FAs and volatile compounds in KNBG meat, where dietary intake and castration also contribute substantially.

Effects of Dietary Sources Containing ω-3 Fatty Acids on the Fatty Acid Composition of Meats in Korean Native Chickens (오메가 3계열 지방산을 함유하는 사료의 급여가 육용 토종닭 계육 내 지방산 조성에 미치는 영향 탐색)

  • Oh, Sung-Taek;Jhun, Heung-Kyu;Park, Jung-Min;Kim, Jin-Man;Kang, Chang-Won;An, Byoung-Ki
    • Food Science of Animal Resources
    • /
    • v.32 no.4
    • /
    • pp.476-482
    • /
    • 2012
  • Estimations were made of oxidative susceptibility and fatty acid composition of edible meats of native chickens fed various dietary sources containing ${\omega}-3$ polyunsaturated fatty acids (PUFA). A total of 240 Korean native chickens were divided into 4 groups, placed into 3 replicates per group, and were fed a commercial diet (Control) or one of the three experimental diets containing 10% perilla meal (PM group), 10% perilla meal-5% full fat flaxseed (PM+FS group), or 10% perilla meal-5% full fat flaxseed-1% fish oil (PM+FS+FO group) for 20 days. Final body weight, weight gain, feed intake, and feed conversion rate among the groups were not significantly different. Dietary treatments did not affect the relative weights of liver, abdominal fat, and breast muscle. The leg weight was increased from the feeding of ${\omega}-3$ PUFA sources. The TBA reactive substance in the edible meat was not different with the dietary treatments. The total ${\omega}-3$ PUFA in chickens that were fed diets containing ${\omega}-3$ PUFA sources increased compared to that of the control. The level of longer chain ${\omega}-3$ PUFAs, such as C20:5 ${\omega}3$ and C22:6 ${\omega}3$ in the PM+FS+FO group, was much higher than that of the others. The addition of local ingredients, such as perilla meal with conventional sources, could be used to obtain value-enhanced meat by enhancing ${\omega}-3$ PUFA.

Effects of Salt and Soysauce Condiment on Lipid Oxidation in Broiled Mackerel (Scomber japonicus) (소금과 간장 양념이 고등어 구이의 지질산화 안정성에 미치는 영향)

  • Ryu, Seung-Hee;Lee, Young-Soon;Moon, Gap-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.1030-1035
    • /
    • 2002
  • Despite health benefits derived from fish oil, polyunsaturated fatty acids (PUFAs) contained in fish oil are susceptible to lipid oxidation. To determine the optimum condition for maintaining good quality cooked fish during storage, mackerels were broiled with salt or soysauce condiments, and the lipid oxidation during 12 days of storage at refrigerated condition was measured. Peroxide value of broiled mackerel group with salt significantly increased after immediate cooking and maintained higher value throughout the storage period compare to the soysauce-added group, but showed similar value to the control group. Conjugated diene content in the soysauce-group was lower than the control and salt-added groups. Malondialdehyde content of broiled mackerel increased twofold and showed similar values in soysauce-added and the control groups during storage, whereas increased in the salt-added group significantly. Fatty acid compositions of the three mackerel groups changed after cooking, whereas that of the control group was almost stable during storage. In comparison with raw mackerel, the ratio of PUFA and saturated fatty acids decreased significantly, and the content of n-3 family fatty acid decreased from 25.53 to 20.63% in salted broiled mackerel. Soysauce group showed no reduction of PUFA with increasing storage time and showed the highest ratio of n-3/n-6 among the three groups at 10 days storage. Results reveal soysauce condiment protects against lipid peroxidation of broiled mackerel. Maillard reaction products (MRPs) found in soysauce might be responsible for the inhibitory effect and is a good condiment for extending storage life of cooked fish containing high amount of PUFA.