• Title/Summary/Keyword: PTx

Search Result 89, Processing Time 0.022 seconds

Toxicity and Changes in Hepatic Metabolizing Enzyme System Induced by Repeated Administration of Pectenotoxin 2 Isolated from Marine Sponges (해면체에서 추출한 Pectenotoxin 2의 마우스에서의 반복적인 투여에 의한 독성 및 간대사효소계에 주는 영향)

  • Yoon, Mi-Young;Kim, Young-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.4
    • /
    • pp.280-285
    • /
    • 1997
  • Pectenotoxin 2 (PTX2), isolated from marine sponges, was examined for its hepatotoxic potential using male ICR mice. PTX2 $(20\;or\;100\;{\mu}g/kg/day,\;ip)$ was administered to mice repeatedly for one or two week. Histopathological examination revealed an increase in granularity in the liver from the mice treated with PTX2. PTX2 did not alter the parameters for hepatotoxicity and nephrotoxicity such as sorbitol dehydrogenase (SDH), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and blood urea nitrogen (BUN). Cytochrome P-450, cytochrome $b_5$, or NADPH cytochrome c reductase was net changed by repeated administration of PTX2. Hepatic microsomal activity of p-nitroanisole O-demethylase, but not aminopyrine N-demethylase, was slightly depressed by PTX2 administerd repeatedly $(100\;{\mu}g/kg/day,\;ip)$ fur 2 weeks. The toxicity of PTX2 $(200\;{\mu}g/kg/day,\;ip)$ was determined in mice pretreated with a metabolic inducer or inhibitor such as phenobarbital, 3-methyl-cholanthrene, $CoCl_2$, or SKF 525-A. Significant alterations in lethality and hepatotoxicity of PTX2 were observed in mice pretreated with a metabolic modulator. The results suggest that liver seems to be the target organ for PTX2 toxicity and also that induction of the PTX2 toxicity may be associated with hepatic drug metabolizing activity.

  • PDF

Acute Toxicity of Pectenotoxin 2 and Its Effects on Hepatic Metabolizing Enzyme System in Mice (마우스에서 Pectenotoxin 2의 급성독성 및 간대사 효소계에 주는 영향)

  • 윤미영;김영철
    • Toxicological Research
    • /
    • v.13 no.3
    • /
    • pp.183-186
    • /
    • 1997
  • Acute toxicity of pectenotoxin 2 (PTX2) was examined in mice. Treatment of mice with a toxic dose of PTX2 resulted in clinical signs such as ataxia, cyanosis and an abrupt decrease in body temperature. Histopathological studies revealed that the liver is the major target organ for PTX2. Activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and sorbitol dehydrogenase (SDH) were significantly elevated by PTX2 administration. Glucose-6-phosphatase activities were not changed by the treatment. The PTX2 treatment decreased relative liver weight without changing the body weight. The effect of PTX2 on hepatic drug metabolizing enzyme system was determined. An ip dose of PTX2 (200 $\mu$g/kg) induced a significant decrease in the hepatic microsomal protein content. Cytochrome P-450 content, cytochrome b$_5$ content, NADPH cytochrome c reductase, aminopyrine N-demethylase activities, or hepatic glutathione content were not altered by PTX2 treatment.

  • PDF

Buccal Transport of Paclitaxel using Ethanol and Glyceryl Monooleate

  • Lee, Yoon-Jin;Kang, Myung-Joo;Park, Young-Mi;Choi, Young-Wook;Lee, Jae-Hwi
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.5
    • /
    • pp.311-314
    • /
    • 2007
  • Paclitaxel (PTX) is an antineoplastic agent approved for the treatment of ovarian and breast carcinomas. However, the use of paclitaxel as an anticancer drug is limited by its extremely poor water solubility (below $0.3\;{\mu}g/mL$). Furthermore, it has very low bioavailability when administered orally because paclitaxel is a substrate of P-glycoprotein (P-gp) efflux pump. In this study, buccal delivery of PTX was investigated as one of the alternatives for PTX delivery. Ethanol and glyceryl monooleate (GMO) were selected as permeation enhancing agents to increase solubility and permeation across buccal mucosa of PTX. At the different concentrations of ethanol solution ($30{\sim}70\;w/w\;%$), PTX permeation was studied, followed effects of GMO in the concentration range of $2.5{\sim}25%$ with ethanol vesicle. The transbuccal ability of PTX was evaluated in vitro using Franz diffusion cells mounted with rabbit buccal mucosa. As a result, incorporation of PTX into ethanol vesicle with GMO significantly enhanced the PTX permeation in rabbit buccal mucosa. Particularly, the mixtures of ethanol:water:GMO at the ratio of 50:47.5:2.5 showed the most excellent enhancing ability. The results showed a promising possibility for buccal delivery of PTX.

Parallel Implementation of SPECK, SIMON and SIMECK by Using NVIDIA CUDA PTX (NVIDIA CUDA PTX를 활용한 SPECK, SIMON, SIMECK 병렬 구현)

  • Jang, Kyung-bae;Kim, Hyun-jun;Lim, Se-jin;Seo, Hwa-jeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.423-431
    • /
    • 2021
  • SPECK and SIMON are lightweight block ciphers developed by NSA(National Security Agency), and SIMECK is a new lightweight block cipher that combines the advantages of SPECK and SIMON. In this paper, a large-capacity encryption using SPECK, SIMON, and SIMECK is implemented using a GPU with efficient parallel processing. CUDA library provided by NVIDIA was used, and performance was maximized by using CUDA assembly language PTX to eliminate unnecessary operations. When comparing the results of the simple CPU implementation and the implementation using the GPU, it was possible to perform large-scale encryption at a faster speed. In addition, when comparing the implementation using the C language and the implementation using the PTX when implementing the GPU, it was confirmed that the performance increased further when using the PTX.

Berberine Alleviates Paclitaxel-Induced Neuropathy

  • Rezaee, Ramin;Monemi, Alireza;SadeghiBonjar, Mohammad Amin;Hashemzaei, Mahmoud
    • Journal of Pharmacopuncture
    • /
    • v.22 no.2
    • /
    • pp.90-94
    • /
    • 2019
  • Objectives: Paclitaxel (PTX) as an anticancer drug used against solid cancers, possesses adverse reactions such as neuropathic pain which has confined its use. PTX-induced neuropathic pain is mediated via activation of oxidative stress. Berberine (BER), an isoquinoline phytochemical found in several plants, exerts strong antioxidant and painkilling properties. In the current study, we aimed to evaluate pain-relieving effect of BER in a mouse model of PTX-induced neuropathic pain. Methods: This study was done using 42 male albino mice that were randomly divided into 6 groups (n = 7) as follow: Sham-operated (not treated with PTX), negative control group (PTX-treated mice receiving normal saline), BER 5, 10, and 20 mg/kg (PTX-treated mice receiving BER) and positive control group (PTX-treated mice receiving imipramine 10 mg/kg). Neuropathic pain was induced by intraperitoneal administration of four doses of PTX (2 mg/kg/day) on days 1, 3, 5 and 7. Then, on day 7, hot plate test was done to assess latency to heat to measure possible anti-neuropathic pain effect of BER. Results: Four doses of PTX 2 mg/kg/day induced neuropathy that was reduced by BER at all time-points (i.e. 0, 30, 60, 90 and 120 min) after injection (P < 0.001 in comparison to control). The statistical analysis of data showed significant differences between groups (P < 0.001 in comparison to negative control), at 30, 60, 90 and 120 min after injection of BER 5, 10 and 20 mg/kg; in other words, 30, 60, 90 and 120 min after BER administration, neuropathic pain was significantly reduced as compared to normal saline-treated mice. Conclusion: Altogether, our results showed that PTX could induce neuropathic pain as reflected by hyperalgesia and BER could alleviate PTX-induced thermal hyperalgesia.

Beneficial Effect of Pentoxifylline on Hypoxia-Induced Cell Injury in Renal Proximal Tubular Cells

  • Jung Soon-Hee
    • Biomedical Science Letters
    • /
    • v.10 no.4
    • /
    • pp.341-346
    • /
    • 2004
  • Tumor necrosis factor-α (TNF-α) or its mRNA expression are increased in acute nephrosis of various types including ischemia/reperfusion injury. This study was undertaken to determine whether pentoxifylline (PTX), an inhibitor of TNF-α production, provides a protective effect against hypoxia-induced cell injury in rabbit renal cortical slices. To induce hypoxia-induced cell injury, renal cortical slices were exposed to 100% N₂ atmosphere. Control slices were exposed to 100% O₂ atmosphere. The cell injury was estimated by measuring lactate dehydrogenase (LDH) release and p-aminohippurate (PAH) uptake. Exposure of slices to hypoxia increased the LDH release in a time-dependent manner. However, when slices were exposed to hypoxia in the presence of PTX, the LDH release was decreased. The protective effect of PTX was dose-dependent over the concentrations of 0.05∼1 mM. Hypoxia did not increase lipid peroxidation, whereas an organic hydroperoxide t-butylhydroperoxide (tBHP) resulted in a significant increase in lipid peroxidation. PTX did not affect tBHP-induced lipid peroxidation. Hypoxia decreased PAH uptake, which was significantly attenuated by PTX and glycine. tBHP-induced inhibition of PAH uptake was not altered by PTX, although it was prevented by antioxidant deferoxarnine. The PAH uptake by slices in rabbits with ischemic acute renal failure was prevented by PTX pretreatment. These results suggest that PTX may exert a protective effect against hypoxia-induced cell injury and its effect may due to inhibition of the TNF-α production, but not by its antioxidant action.

  • PDF

Effects of Adamantyl Derivatives on Pharmacokinetic Behavior of Paclitaxel in Rats

  • Kim, Kyung Mi;Lee, Kyeong;Jang, Kyusic;Moon, Yae Seul;Lee, Hwa Jeong;Rhie, Sandy Jeong
    • Biomolecules & Therapeutics
    • /
    • v.25 no.5
    • /
    • pp.553-558
    • /
    • 2017
  • Paclitaxel (PTX) is one of the most frequently used anticancer agent for treating refractory ovarian cancer, metastatic breast cancer and non-small cell lung cancer. However, its oral administration is impeded by very low bioavailability (<5%) due to the P-glycopprotein (P-gp) efflux pump effect. This study investigated in vitro and in vivo P-gp inhibitory effects of adamantyl derivatives AC-603 and AC-786 in rats. Two adamantyl derivatives tested in this study increased the cytotoxicity of daunomycin (DNM) in P-gp overexpressed cell line by inhibiting P-gp efflux function. Pharmacokinetics of PTX with orally co-administered P-gp inhibitors were assessed in rats to improve PTX absorption. The pharmacokinetic parameters of PTX were determined in rats after intravenous (2 mg/kg) or oral (25 mg/kg) administration in the presence or absence of verapamil (a positive control), AC-603 or AC-786 (0.5 mg/kg or 5 mg/kg). Compared to control group (PTX alone), experimental groups (PTX with AC-603 or AC-786) significantly increased the area under the plasma concentration-time curve of PTX following oral administration by 1.7-2.2 fold. The volume of distribution and total clearance of PTX were decreased, while other parameters were not significantly changed. In conclusion, co-administration of AC-603 or AC-786 enhanced the relative bioavailability of orally administered PTX as compared to control.

Modification of Late Radiation Response of Rat Salivary Glands by Pentoxifylline and Diltiazem (쥐의 타액선 방사선조사 후 만성반응에 Pentoxifylline과 Diltiazem이 미치는 영향)

  • Suh, Hyun-Suk;Yang, Kwang-Mo;Kang, Yun-Kyung
    • Radiation Oncology Journal
    • /
    • v.17 no.3
    • /
    • pp.230-237
    • /
    • 1999
  • Purpose : To elucidate the effects of pentoxifylline and diltiazem on the late response of the salivary glands of the rat after irradiation. Materials and Methods : Sixteen Sprague-Dawley rats were divided into 4 groups : (a) irradiation alone (b) irradiation with pentixifylline (PTX) (c) irradiation with diltiazem (DTZ) (d) irradiation with both PTX and DTZ. Irradiation was given in a single fraction of 16 Gy using 4 MV photon energy through an anterior port encompassing the left side of the salivary gland leaving the right side of salivary gland as a control. PTX, 20 mg/kg and/or DTZ, 50 mg/kg were infused intraperitoneally before irradiation, Two rats from each group were sacrificed on the 10th week and the rest was sacrificed on the 16th week after irradiation. Histopathologic examinations were undertaken for each section and the proportion of vacuolated cells out of the total number of cells under light microscopic fields was calculated. The statistical significance in the difference of the proportion of the vacuolated cells among the experimental groups was evaluated by a $x^2$-test. Results : Irradiated salivary glands of the 10th week group revealed markedly increased number of vacuolated cells compared to those of unirradiated control. The proportion of vacuolated cells was significantly reduced in both the PTX group (p value=0.001) and the combined PTX and DTX group compared to those of irradiation alone group. The DTZ alone group did not reveal the significant reduction of vacuolated cells compared to those of irradiation alone group (p value, >0.05). The 16th week groups revealed similar findings to those of the 10th week group, but the degree of chronic inflammatory cell infiltrates and interstitial fibrosis was increased and the number of acinar cells was reduced compared to those of the 10th week group. Conclusions : PTX significantly reduced the late radiation response of salivary glands, but DTZ did not reduce the same degree as PTX did. Taking the positive results of this study into consideration, it seems reasonable to apply PTX into the clinical trial for the head and neck irradiation to reduce the late radiation sequelae of salivary glands in the near future. At the same time the further experiment to clarify the subcellar mechni는 involved in PTX should be preceded.

  • PDF

Induction of Apoptosis by Pectenotoxin-2 Isolated from Marine Sponges in U937 Human Leukemic Cells (인체 혈구암세포 U937에서 해양해면동물에서 추출된 Pectenotoxin-2에 의한 Apoptosis의 유발에 관한 연구)

  • Shin, Dong Yeok;Kang, Ho Sung;Bae, Song-Ja;Jung, Jee H.;Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.63-70
    • /
    • 2006
  • Natural product compounds are the source of numerous therapeutic agents. The marine environment produces natural products from a variety of structural classes exhibiting activity against numerous disease targets including anticancer agents. Among these, pectenotoxin-2 (PTX-2), which was first identified as a cytotoxic entity in marine sponges, which depolymerizes actin filaments, was found to be highly effective and more potent to activate an intrinsic pathway of apoptosis in p53-deficient tumor cells compared to those with functional p53 both in vitro and in vivo. However, the anti-proliferative mechanism of the compound at non-cytotoxic concentrations has not yet been explored. In the current study, we sought to investigate anti-proliferation and apoptosis of PTX-2 against U937 human leukemic cells and its underlying molecular mechanism. Exposure of U937 cells to PTX-2 resulted in growth inhibition and induction of apoptosis in dose- and time-dependent manner as measured by MTT assay, fluorescent microscopy and flow cytometric analysis. The anti-proliferative effect of PTX-2 was associated with a marked increase in the expression of cyclin-dependent kinase p21 (WAF1/CIP1) mRNA which was tumor suppressor p53-independent. The increase in apoptosis was connected with a time-dependent down-regulation of anti-apoptotic Bcl-XL and inhibitor of apoptosis proteins (IAPs) family such as XIAP and cIAP-2. Though additional studies are needed, these findings suggested that PTX-2-induced inhibition of U937 cells was associated with the induction of apoptotic cell death and the results provided important new insights into the possible molecular mechanisms of the anti-cancer activity of PTX-2.

  • PDF

Controlled Release of Paclitaxel from Biodegradable Polymer Films for Drug-Eluting Stents (약물방출 스텐트용 생분해성 고분자 필름으로부터 파크리탁셀의 조절 방출)

  • Kim, Si-Eun;Lee, Bong-Soo;Kim, Jin-Hyang;Park, Kwi-Deok;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.172-177
    • /
    • 2010
  • Although many researchers have studied the efficacy of paclitaxel (PTX) on many cells during the last two decades, little work has been reported on the importance of release kinetics inhibiting cell proliferation. The aim of this study is to examine the release behavior of the PTX on various biodegradable polymers such as poly(lactic-co-glycolic acid)(PLGA), poly-L-lactide (PLLA), and polycaprolactone (PCL) for drug-eluting stents (DES). The PTX from the fabricated films was released for 8 weeks and the degree of degradation of the films was observed by FE-SEM. Although the degradation time of PCL was the slowest, the PTX release rate was the fastest among them and followed by PLGA and PLLA with the equivalent PTX concentration. It suggests that hydrophobic drug such as PTX from polymer with low $T_g$ like PCL could be moved easily and released rapidly in body temperature.