• Title/Summary/Keyword: PTGS2

Search Result 33, Processing Time 0.025 seconds

Association between Prostaglandin-endoperoxide Synthase 2 (PTGS2) Polymorphisms and Blood Pressure in Korean Population

  • Jin, Hyun-Seok;Hong, Kyung-Won;Lim, Ji-Eun;Han, Hye-Ree;Lee, Jong-Young;Park, Hun-Kuk;Oh, Berm-Seok
    • Genomics & Informatics
    • /
    • v.6 no.3
    • /
    • pp.110-116
    • /
    • 2008
  • Blood pressure refers to the force exerted by circulating blood on the walls of blood vessels, and chronical elevation of blood pressure is known as hypertension. Although hypertension is affected by genetic and environmental factors, the genetic background of hypertension is not fully understood. One of the candidate genetic factors, Prostaglandin-endoperoxide synthase 2 (PTGS2), is a membrane-bound enzyme, catalyzing the conversion of arachidonic acid to prostaglandin, and recently SNPs of PTGS2 gene was associated with hypertension in Japanese population. Therefore the association of PTGS2 polymorphisms was investigated with blood pressure in healthy Korean subjects, 470 unrelated individuals randomly selected from Ansung and Ansan cohorts. The 25 SNPs of PTGS2 gene were identified by the sequencing analysis of 24 Korean samples. Among identified polymorphisms, three SNPs (rs689466, -1329A>G; rs5275, +6365T>C; rs4648308, +8806G> A) were selected for further association analysis, and rs689466 located in promoter region was associated with blood pressure as well as triglyceride level in the blood. By in silico analysis, rs689466 locates in v-Myb transcription factor binding site, and the v-Myb site disappears when the SNP is changed from A to G nucleotide. Individuals with A/G and G/G genotype in rs689466 have higher blood pressure than those with A/A genotype, and the regression p-value is 0.008 for systolic and 0.004 for diastolic blood pressure. In summary, the PTGS2 polymorphism (rs689466) is associated with blood pressure in Asian populations based on this and Japanese studies, shedding light on it as a genetic risk marker of hypertension.

Association of Polymorphisms in Epidermal Growth Factor, Prostaglandin-endoperoxide Synthase 2 and Prolactin Receptor Genes with Semen Quality in Duroc Boars

  • Huang, S.Y.;Song, H.L.;Lin, E.-C.;Lee, W.C.;Chiang, J.C.;Tsou, H.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.6
    • /
    • pp.793-798
    • /
    • 2006
  • The quality characteristics of semen are important indicators of the fertility of a boar. Development of genetic markers for the semen quality in boars will be beneficial to the improvement of porcine fertility. We investigated the relationship between the polymorphisms of epidermal growth factor (EGF), prostaglandin-endoperoxide synthase 2 (PTGS2) and prolactin receptor (PRLR) genes, and semen quality traits in boars. The genomic DNA of 233 boars (157 Duroc and 86 Landrace) from a central testing station was subjected to genotyping for surveying gene frequency. The EGF, PTGS2 and PRLR genotypes were determined using the restriction fragment length polymorphism method. Thirty-seven normal, mature Duroc boars from an AI center were also genotyped and their semen quality traits were collected. The effect of genotype on semen quality traits was analyzed by the least-squares means method using data corrected for season. The frequencies of the AA genotype of EGF, PTGS2 and PRLR in Duroc boars were 0.14, 0.01 and 0.66, respectively. In Landrace, the frequencies of the AA genotype were 0.03, 0.09 and 0.62, respectively. Boars with the BB genotype in EGF, with the AB genotype in PTGS2 and with the AA genotype in PRLR had significantly better semen quality with a higher percentage of normal sperm and a lower percentage of immature sperm than those with other genotypes. These findings imply that polymorphisms of EGF, PTGS2 and PRLR genes might be used as markers for improving the semen quality of boars.

CircZNF609 Aggravated Myocardial Ischemia Reperfusion Injury via Mediation of miR-214-3p/PTGS2 Axis

  • Wen-Qiang Tang;Feng-Rui Yang;Ke-Min Chen;Huan Yang;Yu Liu;Bo Dou
    • Korean Circulation Journal
    • /
    • v.52 no.9
    • /
    • pp.680-696
    • /
    • 2022
  • Background and Objectives: Circular RNAs were known to play vital role in myocardial ischemia reperfusion injury (MIRI), while the role of CircZNF609 in MIRI remains unclear. This study was aimed to investigate the function of CircZNF609 in MIRI. Methods: Hypoxia/reoxygenation (H/R) model was established to mimic MIRI in vitro. Quantitative polymerase chain reaction was performed to evaluate gene transcripts. Cellular localization of CircZNF609 and miR-214-3p were visualized by fluorescence in situ hybridization. Cell proliferation was determined by CCK-8. TUNEL assay and flow cytometry were applied to detect apoptosis. Lactate dehydrogenase was determined by commercial kit. ROS was detected by DCFH-DA probe. Direct interaction of indicated molecules was determined by RIP and dual luciferase assays. Western blot was used to quantify protein levels. In vivo model was established to further test the function of CircZNF609 in MIRI. Results: CircZNF609 was upregulated in H/R model. Inhibition of CircZNF609 alleviated H/R induced apoptosis, ROS generation, restored cell proliferation in cardiomyocytes and human umbilical vein endothelial cells. Mechanically, CircZNF609 directly sponged miR-214-3p to release PTGS2 expression. Functional rescue experiments showed that miR-214-3p/PTGS2 axis was involved in the function of circZNG609 in H/R model. Furthermore, data in mouse model revealed that knockdown of CircZNF609 significantly reduced the area of myocardial infarction and decreased myocardial cell apoptosis. Conclusions: CircZNF609 aggravated the progression of MIRI via targeting miR-214-3p/PTGS2 axis, which suggested CircZNF609 might act as a vital modulator in MIRI.

The Effect of Cucumber mosaic virus 2b Protein to Transient Expression and Transgene Silencing Mediated by Agro-infiltration

  • Choi, Min-Sue;Yoon, In-Sun;Rhee, Yong;Choi, Seung-Kook;Lim, Sun-Hyung;Won, So-Youn;Lee, Yeon-Hee;Choi, Hong-Soo;Lee, Suk-Chan;Kim, Kook-Hyung;Lomonossoff, George;Sohn, Seong-Han
    • The Plant Pathology Journal
    • /
    • v.24 no.3
    • /
    • pp.296-304
    • /
    • 2008
  • The transient and rapid expression system of a foreign protein in planta is a very useful technique in biotechnology application. We have investigated optimum condition of Agrobacterium-infiltration technique in which expression level of foreign proteins were maximized without detrimental effects on plants using GFP and Cucumber mosaic virus 2b protein, which is known as an enhancer of gene expression and a suppressor of post-transcriptional gene silencing(PTGS). The optimum expression level of both RNA and protein of GFP with minimum leaf impairment was obtained at $OD_{600}$=0.2 of Agrobactrium inocula. The steady-state levels of GFP RNA and protein generally peaked at 3 and 7 days post-infiltration(dpi), respectively. In the presence of 2b, both the magnitude and duration of GFP expression was highly increased and we could detect GFP level until 17 dpi. On the other hands, the 2b-mediated higher accumulation of foreign proteins resulted in the repression of normal leaf growth, possibly due to the limitation of supply of energy or materials required for growth maintenance. Using this Agrobacterium-infiltration system with 2b and GFP, we tested a hypothesis for the threshold model of PTGS initiation. Four GFP transgenic lines of N. benthamiana, which shows different expression level of GFP were tested to determine the threshold level for PTGS initiation. Agrobacterium-infiltration of GFP into those GFP-transgenic plants resulted in the co-silencing of the transgenic GFP. It was found that very low concentration of Agrobacterium with GFP and GFP+2b($OD_{600}$=0.002-0.02) which could not phenotypically induce an additive GFP expression, was enough to trigger PTGS pathway in all GFP transgenic plants. This strongly indicates that each GFP-transgenic plant should be expressing the transgenic GFP at its own pre-determined level and there was no buffer zone of additive GFP-expression to the threshold. In other words, the PTGS seems to be immediately activated as a self-defensive mechanism if an internal balance of gene expression is broken.

Association of Single Nucleotide Polymorphisms in the Prostaglandin-endoperoxide Synthase 2 (PTGS2) and Phospholipase A2 Group IIA (PLA2G2A) Genes with Susceptibility to Esophageal Squamous Cell Carcinoma

  • Liu, Fen;Wei, Wen-Qiang;Cormier, Robert T.;Zhang, Shu-Tian;Qiao, You-Lin;Li, Xin-Qing;Zhu, Sheng-Tao;Zhai, Yan-Chun;Peng, Xiao-Xia;Yan, Yu-Xiang;Wu, Li-Juan;He, Dian;He, Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1797-1802
    • /
    • 2014
  • Background: The prostaglandin-endoperoxide synthase 2 (PTGS2) and phospholipase A2 group IIA (PLA2G2A) genes encode enzymes that are involved in arachidonic acid and prostaglandin biosynthesis. Dysregulation of both genes is associated with inflammation and carcinogenesis, including esophageal squamous cell carcinoma (ESCC). We therefore hypothesized that there is an association between single nucleotide polymorphisms (SNPs) in these genes and susceptibility to ESCC. Methods: We performed a gene-wide tag SNP-based association study to examine the association of SNPs in PTGS2 and PLA2G2A with ESCC in 269 patients and 269 healthy controls from Taihangshan Mountain, Henan and Hebei Provinces, the rural area of China which has the highest incidence of esophageal cancer in the world. Thirteen tag SNPs in PLA2G2A and 4 functional SNPs in PTGS2 were selected and genotyped using a high-throughput Mass Array genotyping platform. Results: We found a modest increased risk of ESCC in subjects with the PTGS2 rs12042763 AA genotype (OR=1.23; 95% CI, 1.00-3.04) compared with genotype GG. For PLA2G2A, a decreased risk of ESCC was observed in subjects with the rs11677 CT (OR=0.51, 95%CI, 0.29-0.85) or TT genotype (OR=0.51, 95%CI, 0.17-0.96) or the T carriers (CT+TT) (OR=0.52, 95%CI, 0.31-0.85) when compared with the CC genotype. Also for PLA2G2A, rs2236771 C allele carriers were more frequent in the control group (P=0.02). Subjects with the GC (OR=0.55, 95%CI, 0.33-0.93) or CC genotype (OR=0.38, 95% CI, 0.16-0.94) or the C carriers (GC+CC) (OR=0.52, 95%CI, 0.32-0.85) showed a negative association with ESCC susceptibility. Conclusions: Our results suggest that PTGS2 and PLA2G2A gene polymorphisms may modify the risk of ESCC development.

Phenotypic and Transcriptomic Analysis of Nicotiana benthamiana Expressing Cucumber mosaic virus 2b gene (오이모자이크바이러스 2b 유전자 발현 담배의 형태 및 전사체 분석)

  • Sohn, Seong-Han;Kim, Yoon-Hee;Ahn, Yul-Kyun;Kim, Do-Sun;Won, So-Yoon;Kim, Jung-Sun;Choi, Hong-Soo
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.186-192
    • /
    • 2015
  • Cucumber mosaic virus possesses 2b gene known as a suppressor of post-transcriptional gene silencing (PTGS). To investigate its function and effect in plant, transgenic Nicotiana benethamiana expressing 2b gene was developed and analyzed in phenotypic characteristics and differential gene expression (DEG) comparing with wild-type. Eight lines of transgenic plants ($T_0$) were obtained with difficulty and showed severe deformed phenotypes in leaves, flowers, petioles and etc. Moreover, transgenic plants were hardly able to set seeds, but small amounts of seeds were barely produced in some of transgene-hemizygous plants. DEG analysis showed that transgenic plant ectopically accumulated diverse RNA transcripts at higher levels than wild-type probably due to the disturbance in RNA metabolism, especially of RNA decay, caused by 2b-mediated inhibition of PTGS. These ectopic accumulations of RNAs disrupt protein and RNA homeostasis and then subsequently lead to abnormal phenotypes of transgenic plants.

The Prostaglandin Synthase 2/cyclooxygenase 2 (PTGS2/COX2) rs5277 Polymorphism Does not Influence Risk of Colorectal Cancer in an Iranian Population

  • Khorshidi, Fatemeh;Haghighi, Mahdi Montazer;Mojarad, Ehsan Nazemalhosseini;Azimzadeh, Pedram;Damavand, Behzad;Vahedi, Mohsen;Almasi, Shohreh;Aghdaei, Hamid Asadzadeh;Zali, Mohammad Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3507-3511
    • /
    • 2014
  • Background: The prostaglandin-endoperoxide synthase 2 [PTGS2, commonly known as cyclooxygenase-2 (COX-2)] is an enzyme induced by proinflammatory stimuli that is often overexpressed in malignant tissue and involved in the synthesis of prostaglandins and thromboxanes, regulators of processes such as inflammation, cell proliferation, and angiogenesis, all relevant for cancer development. We investigated whether a functional genetic polymorphism, rs5277, in COX-2 may have a risk-modifying effect on sporadic colorectal cancer in an Iranian population. Materials and Methods: We conducted a case-control study on 167 patients with colorectal cancer and 197 cancer-free controls in Taleghani Hospital in Tehran, Iran, between 2007 and 2011. Peripheral blood samples of both groups were processed for DNA extraction and genotyping of the COX-2 gene polymorphism (rs5277) using PCR-RFLP. RFLP results were confirmed by direct sequencing. Logistic regression analysis was performed to calculate the adjusted odds ratio (OR) and 95% confidence interval (95% CI). Results: There was no significant difference in the distribution of COX-2 gene rs5277 polymorphism genotype and the allelic form, among CRC patients compared with the healthy control group (p: 0.867). Conclusions: Our results suggest that rs5277 polymorphism in COX2 could not be a good prognostic indicator for patients with CRC.

Effects of Hyaluronidase during In Vitro Maturation on Maturation and Developmental Competence in Porcine Oocytes

  • Jeon, Ye-Eun;Hwangbo, Yong;Cheong, Hee-Tae;Park, Choon-Keun
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.86-92
    • /
    • 2019
  • The aim of this study was to investigate effects of hyaluronidase during IVM on oocyte maturation, oxidative stress status, expression of cumulus expansion-related (PTX, pentraxin; GJA1, gap junction protein alpha 1; PTGS2, prostaglandin-endoperoxide synthase 2) and fatty acid metabolism-related (FADS1, delta-6 desaturase; FADS2, delta-5 desaturase; PPARα, peroxisome proliferator-activated receptor-alpha) mRNA, and embryonic development of porcine oocytes. The cumulus-oocyte complexes (COCs) were incubated with 0.1 mg/mL hyaluronidase for 44 h. Cumulus expansion was measured at 22 h after maturation. At 44 h after maturation, nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels were measured. Gene expression in cumulus cells was analyzed using real time PCR. The cleavage rate and blastocyst formation were evaluated at Day 2 and 7 after insemination. In results, expansion of cumulus cells was suppressed by treatment of hyaluronidase at 22 h after maturation. Intracellular GSH level was reduced by hyaluronidase treatment (p < 0.05). On the other hand, hyaluronidase increased ROS levels in oocytes (p < 0.05). Only PTGS2 mRNA was enhanced in COCs by hyaluronidase (p < 0.05). Population of oocytes reached at metaphase II stage was higher in control group than hyaluronidase treated group (p < 0.05). Both of cleavage rate and blastocyst formation were higher in control group than hyaluronidase group (p < 0.05). Our present results showed that developmental competence of porcine oocytes could be reduce by hyaluronidase via inducing oxidative stress during maturation process and it might be associated with prostaglandin synthesis. Therefore, we suggest that suppression of cumulus expansion of COCs could induce oxidative stress and decrease nuclear maturation via reduction of GSH synthesis and it caused to decrease developmental competence of mammalian oocytes.

Improving the meiotic competence of small antral follicle-derived porcine oocytes by using dibutyryl-cAMP and melatonin

  • Jakree Jitjumnong;Pin-Chi Tang
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.1007-1020
    • /
    • 2024
  • Objective: We increased the nuclear maturation rate of antral follicle derived oocytes by using a pre-in vitro maturation (IVM) culture system and improved the developmental potential of these porcine pathenotes by supplementing with melatonin. Furthermore, we investigated the expression patterns of genes involved in cumulus expansion (HAS2, PTGS2, TNFAIP6, and PTX3) derived from small and medium antral follicles before and after oocyte maturation. Methods: Only the cumulus oocyte-complexes (COCs) derived from small antral follicles were induced with [Pre-SF(+)hCG] or without [Pre-SF(-)hCG] the addition of human chorionic gonadotropin (hCG) during the last 7 h of the pre-IVM period before undergoing the regular culture system. The mature oocytes were investigated on embryonic development after parthenogenetic activation (PA). Melatonin (10-7 M) was supplemented during in vitro culture (IVC) to improve the developmental potential of these porcine pathenotes. Results: A pre-IVM culture system with hCG added during the last 7 h of the pre-IVM period [Pre-SF(+)hCG] effectively supported small antral follicle-derived oocytes and increased their nuclear maturation rate. The oocytes derived from medium antral follicles exhibited the highest nuclear maturation rate in a regular culture system. Compared with oocytes cultured in a regular culture system, those cultured in the pre-IVM culture system exhibited considerable overexpression of HAS2, PTGS2, and TNFAIP6. Porcine embryos treated with melatonin during IVC exhibited markedly improved quality and developmental competence after PA. Notably, melatonin supplementation during the IVM period can reduce and increase the levels of intracellular reactive oxygen species (ROS) and glutathione (GSH), respectively. Conclusion: Our findings indicate that the Pre-SF(+)hCG culture system increases the nuclear maturation rate of small antral follicle-derived oocytes and the expression of genes involved in cumulus expansion. Melatonin supplementation during IVC may improve the quality and increase the blastocyst formation rate of porcine embryos. In addition, it can reduce and increase the levels of ROS and GSH, respectively, in mature oocytes, thus affecting subsequent embryos.

Lactobacillus acidophilus Strain Suppresses the Transcription of Proinflammatory-Related Factors in Human HT-29 Cells

  • Chen, Kun;Liang, Nailong;Luo, Xuegang;Zhang, Tong-Cun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.64-68
    • /
    • 2013
  • Previous studies have shown that lactic acid bacteria can inhibit inflammatory responses, but the mechanisms are very little known. In this study, transaction and expression of three proinflammatory factors, iNOS, PTGS-2, and IL8, which are closely related to the inflammatory response, were investigated by luciferase reporter assay and RTPCR in HT-29 cells treated by Lactobacillus acidophilus. The results showed that the live L. acidophilus sharply down-regulated the transcription of these three genes. Because there was a NF-${\kappa}B$ binding site located at -265 bp, -225 bp, and -95 bp upstream of the iNOS, PTGS-2, and IL8 promoters, respectively, we further addressed the effects of NF-${\kappa}B$ on transaction of the three promoters by cotransfection. As was expected, NF-${\kappa}Bs$ remarkably upregulated the activity of the reporter gene and, no effect of NF-${\kappa}B$s on IL-8 promoter transaction was found after NF-${\kappa}B$ binding site mutation of the IL8 promoter in HT-29 cells. In conclusion, the live L. acidophilus decreased the transcriptional activity of NF-${\kappa}B$ and, in turn, inhibited the transaction of NF-${\kappa}B$ on the three proinflammatory factors mentioned above.