• Title/Summary/Keyword: PTCR effect

Search Result 69, Processing Time 0.029 seconds

Effect of additives on the PTCR Electrical Properties with $Nb_2O_5$ addition ($Nb_2O_5$ 첨가제가 PTCR의 전기적 특성에 미치는 영향)

  • Choi, K.C.;Lee, N.H.;Park, S.H.;Kim, Y.H.;Chu, S.N.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1885-1887
    • /
    • 1999
  • 본 연구에서는 $BaTiO_3$를 기본조성으로하는 반도성 세라믹스인 PTC 써미스터에 $Nb_2O_5$을 미량 첨가하여 미세구조 및 PTCR의 전기적 특성에 대해서 연구하였다. 또한 복소 임피던스 측정을 통하여 $Nb_2O_5$ 첨가에 따른 grain, grain boundary 저항변화에 대해서도 고찰하였다. $(Ba_{0.9}Sr_{0.05}Ca_{0.05})TiO_3-0.01SiO_2-0.001MnCO_3$를 기본조성으로 하여 $Nb_2O_5$ 첨가량을 $0.15{\sim}0.2mol%$까지 변화시켰으며 소결조건은 소결온도 $1350^{\circ}C$, 2h 유지하였으며 냉각속도는 $100^{\circ}C/h$로 하였다 첨가된 Nb의 양이 증가할수록 grain의 크기는 점차로 작아졌으며 상온저항과 peak 저항이 함께 증가하였다. 0.15mol% 첨가된 시편의 경우 상온저항은 $19[\Omega]$이었으며 peak 저항은 $5{\times}10^6[{\Omega}]$정도가 되었다.

  • PDF

Effect of Partially Oxidized Ti Powder on Electrical Properties and Microstructures of $BaTiO_3$-based Ceramics ($BaTiO_3$계 세라믹스의 전기적 성질과 미세조직에 미치는 부분산화 Ti 분말 첨가의 영향)

  • Kim, Jun-Gyu;Jo, Won-Seung;Park, Gyeong-Sun
    • Korean Journal of Materials Research
    • /
    • v.10 no.10
    • /
    • pp.671-676
    • /
    • 2000
  • $BaTiO_3$-based ceramics with partially oxidized Ti powders were prepared by sintering at $1350^{\circ}C$ for 1 h in v vacuum, and then heated in air. In this study, the effect of partially oxidized Ti powders on electrical properties and microstructures of $BaTiO_3$-based ceramics was investigated. It was found out that the semiconductive $BaTiO_3$-based ceramics beζame to show excellent PTCR (more than $10^5$) characteristic by adding 5~7 vol% of partially oxidized Ti powder. Also, it was found out that the sintered compact had extremely porous and fine-grained microstructure. The relative density and grain size of sintered compact with 5 vol% of partially oxidized Ti powders were 54% and $1.3\;{\mu\textrm{m}}$, respectively. The mechanism for the development of PTCR characteristic in $BaTiO_3$-based ceramics with partially oxidized Ti powders due to the adsorption of oxygen at grain boundaries, and could be explained, based on Heywang model.

  • PDF

Positive Temperature Coefficient of Resistivity(PTCR) Behavior of Nb2O5 Added Ba0.99(Bi0.5Na0.5)0.01TiO3 Ceramics as a Function of Sintering Time (Nb2O5 첨가와 소결시간에 따른 Ba0.99(Bi0.5Na0.5)0.01TiO3 세라믹스의 PTCR 특성)

  • Oh, Young-Kwang;Choi, Seung-Hun;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.559-562
    • /
    • 2011
  • In this study, the effect of $Nb_2O_5$ and sintering time on the positive temperature of coefficient of resistivity (PTCR) behavior of lead free $Ba_{0.99}(Bi_{0.5}Na_{0.5})_{0.01}TiO_3$ (BBNT) ceramics were investigated in order to fabricate a PTC thermistor with high $T_c$ temperature more than $140^{\circ}C$. In particular, BBNT ceramic doped with 0.1mol% $Nb_2O_5$ and sintered at $1350^{\circ}C$ for 4 h has significantly increased Curie temperature ($T_c$) of about $200^{\circ}C$, showed good PTCR behavior of room-temperature resistivity ($\rho_{rt}$) of $40{\Omega}{\cdot}cm$, a high $\rho_{max}/\rho_{min}$ ratio of $43.78{\times}10^3$ and a large resistivity temperature factor (${\alpha}$) of 16.1%/$^{\circ}C$. With increasing addition of $Nb_2O_5$ content, the $\rho_{rt}$ decreased to a minimum value of $40\;{\Omega}cm$ at 0.1mol% $Nb_2O_5$ and the $\rho_{rt}$ increased for x value over 0.1 mol%.

Fabrication and PTCR Characteristics of Porous Barium Titanate Thermistors using Graphite Powders

  • Yoo, Kwang-Soo;Yun, Young-Ho;Lee, Yong-Seok;Lee, Byung-Ha
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.238-241
    • /
    • 1996
  • New porous BaTiO$_3$ thermistors were fabricated using graphite powders (0 to 10 wt. %) and their porosities were in the range of 9.1% to 16.2%. As results of impedance analysis, it was confirmed that the pores affected the grain-boundary resistance and the bulk (grain interior) resistance was constant as about 25 $\Omega$ at room temperature. The magnitude of PTCR effect $(p_{max}/p)$ markedly increased from 3 orders to 7 orders without addition of any acceptor dopant such as Mn or Cr.

  • PDF

A Study on the Gas Sensing Properties of $SnO_2$ Gas Sensors Fabricated by Sol-Gel Method (졸-겔법으로 제작된 $SnO_2$ 가스센서의 가스 감응 특성에 관한 연구)

  • Jang, K.U.;Kim, M.H.;Lee, W.J.;Kim, T.W.;Lee, H.S.;Chung, D.H.;Ahn, J.H.;Lee, J.U.;Kim, S.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.591-592
    • /
    • 2005
  • PTC Thermistors specimens were fabricated by added $MnO_2$ as donors, and $Nb_2O_5$ as acceptors and sintered $1250^{\circ}C$/2hrs. Average grain size decreased with increased in added $MnO_2$, and increased with added in $Nb_2O_5$. But, appeared liquid phase as $Bi_2O_3$ and $TiO_2$, affect to grain growth. XRD result, peak strength waslowed then crystallization not well, but, secondary phase were not showed all specimens. All specimens resistance were so high, about $40M\Omega$ over, couldn't measured to those resistance and doesn't appear PTCR effect.

  • PDF

Microstructure and PTCR Behavior of Semiconducting (1-x)$BaTiO_3$ - x$(Bi_{1/2}K_{1/2})TiO_3$ Ceramics ($BaTiO_3$ - $(Bi_{0.5}Ko_{0.5})TiO_3$계 세라믹의 PTC효과와 미세구조)

  • Park, Yong-Jun;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Kim, Dae-Joon;Lee, Woo-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.336-336
    • /
    • 2008
  • A positive temperature coefficient of electrical resistivity (PTCR) was investigated in a ferroelectric lead-free perovskite-type compound $(Bi_{0.5}K_{0.5})TiO_3$ within $BaTiO_3$-based solid solution ceramics. The electrical properties and the microstructure of (1-x) $BaTiO_3$ - x $(Bi_{0.5}K_{0.5})TiO_3$ (BBKT) ceramics made using a conventional mixed and have been synthesized by an ordinary sintering technique. The Curie temperature was obviously increased with increasing of $(Bi_{0.5}K_{0.5})TiO_3$ content. The BKT ceramics (x=0.05) sintered at $1400^{\circ}C$ for 4h display low resistivity values of $10^1-10^2$ ohm cm at room temperature, PTCR effect(jump) of 1.05*$10^3$, and the Curie temperature of $T_c=141^{\circ}C$.

  • PDF

Effect of Transition Metal on Properties of SiC Electroconductive Ceramic Composites (SIC 도전성 세라믹 복합체의 특성에 미치는 천이금속의 영향)

  • 신용덕;오상수;주진영
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.7
    • /
    • pp.352-357
    • /
    • 2004
  • The composites were fabricated, respectively, using 61vol.% SiC - 39vol.% TiB$_2$ and using 61vo1.% SiC - 39vo1.% WC powders with the liquid forming additives of 12wt% $Al_2$O$_3$+Y$_2$O$_3$ by pressureless annealing at 180$0^{\circ}C$ for 4 hours. Reactions between SiC and transition metal TiB$_2$, WC were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H), TiB$_2$ and YAG(Al$_{5}$Y$_3$O$_{12}$) crystal phase on the SiC-TiB$_2$, and SiC(2H), WC and YAG(Al$_{5}$Y$_3$O$_{12}$) crystal phase on the SiC-WC composites. $\beta$\$\longrightarrow$$\alpha$-SiC phase transformation was ocurred on the SiC-TiB$_2$, but $\alpha$\$\longrightarrow$$\beta$-SiC reverse transformation was not occurred on the SiC-WC composites. The relative density, the vicker's hardness, the flexural strength and the fracture toughness showed respectively value of 96.2%, 13.34GPa, 310.19Mpa and 5.53Mpaㆍml/2 in SiC-WC composites. The electrical resistivity of the SiC-TiB$_2$ and the SiC-WC composites is all positive temperature coefficient resistance(PTCR) in the temperature ranges from $25^{\circ}C$ to 50$0^{\circ}C$. 2.64${\times}$10-2/$^{\circ}C$ of PTCR of SiC-WC was higher than 1.645${\times}$10-3/$^{\circ}C$ of SiC-TiB$_2$ composites.posites.

Electrical Properties of Donor-doped BaTiO3 Ceramics by Attrition Milling and Calcination Temperature (분쇄 방법 및 하소온도에 따른 Doner-doped BaTiO3의 전기적 특성)

  • Lee, Jeong-Cheol;Myong, Seong-Jae;Chun, Myoung-Pyo;Cho, Jeong-Ho;Kim, Byung-Ik;Shin, Dong-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.3
    • /
    • pp.217-221
    • /
    • 2008
  • In this study, We have been investigated the effect of calcination temperature and high-energy ball-milling of powder influences the $BaTiO_3$-based PTCR(Positive Temperature coefficient Resistance) characteristics and microstructure. The mixed powder was obtained from $BaCO_3$, $TiO_2$, $CeO_2$ ball-milled in attrition mill. The mixed powder was calcine from 1000 $^{\circ}C$ to 1200 $^{\circ}C$ in air and then it was sintered in reduction- re-oxidation atmosphere. As a result, The room-temperature electrical resistivity decreased and increased with increasing calcination temperature. specially, Attrition milled powder could have low room-temperature resistivity and high PTC jump order at 1100 $^{\circ}C$. attrition milling had lower room-temperature resistivity than ball milling. Particle size decreased by Attrition milling of powder influences in calcination temperature and room-temperature resistivity.

Effect of Pressurless Annealing Temperature on the Properties of α-SiC-WC Electroconductive Ceramic Composites. (α-SiC-WC 電導性 세라믹 複合體의 特性에 미치는 無加壓 Annealing 溫度)

  • Sin, Yong Deok;Ju, Jin Yeong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.242-242
    • /
    • 2004
  • The composites were fabricated 61 vol.%α-α-SiC and 39vol.% WC powders with the liquid forming additives of 12wt% Al₂O₃+Y₂O₃ by pressureless annealing at 1700, 1800, 1900℃ for 4 hours. The result of phase analysis of composites by XRD revealed α-SiC(2H), WC, and YAG($Al_5Y_3O_{12}$) crystal phase. The relative density, the flexural strength, fracture toughness and Young′s modulus showed respectively the highest value of 99.4%, 375.76㎫, 5.79㎫ㆍ$m^{\frac{1}{2}}$, and 106.43㎬ for composite by pressureless annealing temperature 1900℃ at room temperature. The electrical resistivity showed the lowest value of 1.47×$10^{-3}$/Ω·㎝ for composite by pressureless annealing temperature 1900℃ at 25℃. The electrical resistivity of the α-SiC-WC composites was all positive temperature cofficient resistance (PTCR) in the temperature ranges from 25℃ to 500℃.

Effect of Pressurless Annealing Temperature on the Properties of $\alpha$-SiC-WC Electroconductive Ceramic Composites. ($\alpha$-SiC-WC 전도성 세라믹 복합체의 특성에 미치는 무가압 Annealing 온도)

  • 신용덕;오상수;주진영
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.241-247
    • /
    • 2004
  • The composites were fabricated 61 vol.%$\alpha$-$\alpha$-SiC and 39vol.% WC powders with the liquid forming additives of 12wt% $Al_2$O$_3$+Y$_2$O$_3$ by pressureless annealing at 1700, 1800, 190$0^{\circ}C$ for 4 hours. The result of phase analysis of composites by XRD revealed $\alpha$-SiC(2H), WC, and YAG(Al$_{5}$ Y$_3$O$_{12}$ ) crystal phase. The relative density, the flexural strength, fracture toughness and Young's modulus showed respectively the highest value of 99.4%, 375.76㎫, 5.79㎫ㆍm$\frac{1}{2}$, and 106.43㎬ for composite by pressureless annealing temperature 190$0^{\circ}C$ at room temperature. The electrical resistivity showed the lowest value of 1.47${\times}$10$^{-3}$ $\Omega$$.$cm for composite by pressureless annealing temperature 190$0^{\circ}C$ at $25^{\circ}C$. The electrical resistivity of the $\alpha$-SiC-WC composites was all positive temperature cofficient resistance (PTCR) in the temperature ranges from $25^{\circ}C$ to 50$0^{\circ}C$.