• Title/Summary/Keyword: PTC (positive temperature coefficient)

Search Result 60, Processing Time 0.033 seconds

Development on Electrical Fire Prevention System of Small Size and High Speed by using PTC Thermistor (PTC 서미스터를 이용한 소형 고속응성의 전기화재 방재시스템 개발)

  • Kwak, Dong-Kurl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.1
    • /
    • pp.51-58
    • /
    • 2008
  • This paper is studied on a prevention system for electrical fire and electrical faults by using electrical temperature characteristic of PTC thermistor. The PTC thermistor has characteristic of positive resistivity temperature coefficient according to the temperature variation, which is construction of a regular square and cube demarcation with $BaTiO_3$ ceramics of positive temperature coefficient. Also PTC shows the phenomenon which is rapidly increased in the resistivity if the temperature is increased over Curie temperature point. This paper is proposed on a protective control system used with temperature sensor of PTC thermistor. The proposed prevention system will prevent electrical fires due to electric short circuit faults or overload faults. And the prevention system will solve the problems that circuit breakers to be commonly used at existing are happened frequently electrical fires and electrical disasters due to incapable operation, weak reliability and low speed response. Some experimental results of the proposed apparatus are confirmed to the validity of the analytical results.

  • PDF

A Study on Development of Electric Safety Control Apparatus by Using Thermal Characteristics of PTC Thermistor (PTC 서미스터의 온도특성을 이용한 전기안전 제어장치 개발에 관한 연구)

  • Kwak, Dong-Kurl;Jung, Do-Young
    • Fire Science and Engineering
    • /
    • v.21 no.4
    • /
    • pp.65-71
    • /
    • 2007
  • This paper is studied on a protective control system for electrical fire and electrical faults by using electrical and thermal characteristics of PTC thermistor. The PTC thermistor has characteristic or positive resistivity temperature coefficient according to the temperature variation, which is construction of a regular square and cube demarcation with $BaTiO_3$ Ceramics of positive temperature coefficient. Also PTC thermistor shows the phenomenon which is rapidly increased in the resistivity if the temperature is increased over Curie temperature point. This paper is proposed on a protective control system used PTC thermistor which is protected from electrical fire due to electric short circuit faults or overload faults. Some experimental results of the proposed electric safety control apparatus are confirmed to the validity of the analytical results.

A Study on Protective Control System for Electrical Fire using Characteristics of SCR and Multilayer-Type PTC Thermistor (SCR과 적층형 PTC 서미스터의 전기적 특성을 이용한 전기화재 보호제어시스템에 관한 연구)

  • Kwak Dong-Kurl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.31-35
    • /
    • 2006
  • This paper is studied on a protective control system for electrical fire used electrical characteristics of SCR and multilayer-type PTC thermistor. The PTC thermistor has characteristic or positive resistivity temperature coefficient according to the temperature variation, which is construction of a regular square and cube demarcation with $BaTiO_{3_}$Ceramics of positive temperature coefficient. Also PTC shows the phenomenon which is rapidly increased in the resistivity if the temperature is increased over Curie temperature point. This paper is proposed on a protective control system used multilayer-type PTC which is protected from electrical fire due to electric short circuit faults or overload faults. Some experimental results of the proposed apparatus is confirmed to the validity of the analytical results.

  • PDF

Preparation and Properties of Polymer PTC Composites for Process Safety (공정안전용 Polymer PTC 소재의 제조 및 특성)

  • 강영구;조명호
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.101-108
    • /
    • 2003
  • Polymeric positive temperature coefficient(PTC) composites have been prepared by incorporating carbon black(CB) into high density polyethylene(HDPE), polyphenylene sulfide(PPS) and polybutylene terephthalate(PBT) matrices. A PTC effect was observed in the composite, caused by the large thermal expansion due to He consecutive melting of HDPE, PPS and PBT crystallites. This theory is based upon the premise that the PTC phenomenon is due to a critical separation distance between carbon particles in the polymer matrix at the higher temperature. The influence of PTC characteristics of the PPS/CB composite can be explained by DSC result. HDPE, one of prepared composition, exhibit the higher performance PTC behavior that decreaseing of negative temperature coefficient(NTC) effect and improved reproducibility by chemically crosslinking. Also, PBT/CB and PPS/CB composites exhibit the higher PTC peack temperature than HDPE/CB PTC composite, individually $200^{\circ}C$ and $230^{\circ}C$. These PTC composite put to good use in a number of safety application, such as self$.$controlled heater, over-current protectors, auto resettable switch, high temperature proctection sensor, etc.

A Study on the Ignition Characteristics of the Electric Mosquito Repellent Mat (화재사례를 통한 전자 모기향의 발화특성에 관한 연구)

  • Choi, Jae-Sung;Choi, Seung-Bok;Min, Se-Hong;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.196-205
    • /
    • 2009
  • Electric mosquito repellent mats can be ignited by damage of cables, partial disconnection, overload. tracking and so on. In this study, we examined the structure of mosquito repellent mat, positive temperature coefficient(PTC) thermistor, used for heating element and phenomenological characteristics of remains, obtained on the scene of fires. After reappearance ignition test of PTC thermistors, we did comparison analysis them. And we could confine that the feature of heating plate and the shape of bursting were same.

A Study on the PTC Thermistor Characteristics of Polyethylene and Polyethylene Copolymer Composite Systems in Melt and Solution Manufacturing Method (용액 및 용융 가공방법에 따른 PE 및 PE 공중합물의 PTC 서미스터 특성 연구)

  • 김재철;박기헌;남재도
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.812-820
    • /
    • 2002
  • The positive temperature coefficient (PTC) characteristics of polymer composites were investigated with the nano-sized carbon black particles using solution tasting and melt compounding methods. The polymeric PTC composites should the electrical threshold at 35 wt% for the melt compounding method and 40 wt% for the solution casting method. The ethylene vinylacetate copolymer (EVA) composite showed a gradual increase of resistance as a function of temperature and showed a maximum at the polymer molting point. The resistance of the high-density polythylene (HDPE) composite remains unchanged with temperature but started to Increase sharply near the melting point of HDPE and showed a maximum resistance at the melting point of HDPE. The dispersion of nano-sized carbon black particles was investigated by scanning electron microscopy (SEM) and low resistance after electrical threshold, and both methods exhibited a well dispersed morphology. When the electric current was applied to the PTC composites, the resistance started increasing at the curie temperature and further increased until the trip temperature was roached. Then the resistance remained stable over the trip temperature. The secondary increase started at T$\sub$m/ of matrix polymer and kept increasing up to the trip temperature.

PTC Behavior of Polymer Composites Containing Ionomers upon Electron Beam Irradiation

  • Kim, Jong-Hawk;Cho, Hyun-Nam;Kim, Seong-Hun;Kim, Jun-Young
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.53-62
    • /
    • 2004
  • We have prepared polymer composites of low-density polyethylene (LDPE) and ionomers (Surlyn 8940) containing polar segments and metal ions by melt blending with carbon black (CB) as a conductive filler. The resistivity and positive temperature coefficient (PTC) of the ionomer/LDPE/CB composites were investigated with respect to the CB content. The ionomer content has an effect on the resistivity and percolation threshold of the polymer composites; the percolation curve exhibits a plateau at low CB content. The PTC intensity of the crosslinked ionomer/LDPE/CB composite decreased slightly at low ionomer content, and increased significantly above a critical concentration of the ionomer. Irradiation-induced crosslinking could increase the PTC intensity and decrease the NTC effect of the polymer composites. The minimum switching current (Ι$\sub$trip/) of the polymer composites decreased with temperature; the ratio of Ι$\sub$trip/ for the ionomer/LDPE/CB composite decreased to a greater extent than that of the LDPE/CB composite. The average temperature coefficient of resistance (${\alpha}$$\sub$T/) for the polymer composites increased in the low-temperature region.

A Study on Electric Safety Control Device for Prevention of Over Current and Short Circuit Faults (과전류 및 단락사고 방지용 전기안전 제어장치에 관한 연구)

  • Jo, Si-Hwan;Kwak, Dong-Kurl;Jung, Do-Young;Shim, Jae-Sun;Kim, Jung-Sook
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2100-2101
    • /
    • 2008
  • This paper is studied on a protective control system for electrical fire and electrical faults due to over current or electric short circuit faults by using electrical thermal characteristics of PTC (Positive Temperature Coefficient) thermistor and current response characteristics of high sensitive reed switch. The PTC thermistor has characteristic of positive resistivity temperature coefficient according to the temperature variation, which is construction of a regular square and cube demarcation with BaTiO3_Ceramics of positive temperature coefficient. Also PTC thermistor shows the phenomenon which is rapidly increased in the resistivity if the temperature is increased over Curie temperature point, and reed switch, which is used for electrical fault current sensing devices, have a excellent characteristic of response velocity in degree of ${\mu}s{\sim}ms$ that sensing magnetic flux in proportion to dimension of line current. This paper is proposed on a protective control system use PTC thermistor and reed switch for sensor which is protected from electrical fire due to overload faults or electric short circuit faults. Some experimental results of the proposed electric safety control device are confirmed to the validity of the analytical results.

  • PDF

PTC/NTC Behaviors of Nanostructured Carbon Black-filled HDPE Polymer Composites

  • Park, Soo-Jin;Seo, Min-Kang;Lee, Jae-Rock
    • Carbon letters
    • /
    • v.2 no.3_4
    • /
    • pp.159-164
    • /
    • 2001
  • In this study, the effects of carbon black (CB) content and anodic oxidation treatment with $AgNO_3$ on positive temperature coefficient (PTC) behavior of CB/HDPE nanocomposites were investigated. Also, the addition of elastomer as a toughing agent was studied. The 20~50 wt% of CB, 0~5 wtt% of elastomer, and 1 wt% of $AgNO_3$-filled HDPE nanocomposites were prepared using the internal mixer in 60 rpm at $160{\circ}C$ and the compression-molded at $180{\circ}C$ for 10 min. As a result, the room temperature resistivity and PTC intensity of the composites were dependent, to a large extent, on the content of CB, addition of elastomer, and surface chemical properties that were controlled in the relative arrangements of the carbon black aggregates in a polymeric matrix. Moreover, the composites with relatively low room temperature resistivity and suitable PTC intensity could be achieved by treatment of $AgNO_3$. Consequently, it was noted that PTC effect was due to the deagglomeration or the breakage of the conductive networks caused by thermal expansion or crystalline melting of the polymeric matrix.

  • PDF

A Study on the Characterstics of the BaT$iO_3$PTC Thermistor for Fire Detection Sensor (화재감지센서 활용을 위한 BaT$iO_3$계 PTC 서미스터의 특성에 관한 연구)

  • 추순남;최명규;백동현;박정철
    • Fire Science and Engineering
    • /
    • v.16 no.4
    • /
    • pp.15-19
    • /
    • 2002
  • This dissertation is about the development of $BaTiO_3$-type PTC(Positive Temperature Coefficient) thermistor by composition method. A multilayer-type PTC samples were fabricated under optimal conditions after setting the experimental composition equation as ($Ba_{0.95-x}$S $r_{0.05}$$Ca_{x}$ )$TiO_3$-$0.01TiO_2$-$0.01SiO_2$-$\alpha$$MnCO_3$-$\beta$N $b_2$ $O_{5}$.) and their testing results were analyzed. The optimal sin-tering and cooling temperatures were 13$50^{\circ}C$ for two hours and $100^{\circ}C$/h for an hour, respectively; By composing Ca and Mn, dopants to lower the resistivity at room temperature, and Nb, a dopant to raise peak resistivity(Ca:5 mol%, Mn:0.08 mol%, Nb:0.18 mol%), appropriately, a PTC thermistor, having the characteristics of relatively low resistivity at room temperature and high peak resistivity and a good temperature coefficient, has been developed. And we find that it is possible of application for fire detection sensor.r.r.