• Title/Summary/Keyword: PSpice Firing voltages

Search Result 3, Processing Time 0.026 seconds

A PSpice Model of Gas Tube and ZnO Varistor (가스튜-브와 산화아연 바리스터의 PSpice 모델)

  • 송재용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.150-158
    • /
    • 1999
  • The process of designing protective circuits against damage by transient overvoltages requires much work and expensive equipment. However computer simulation using PSpice can overcome these problems. In this paper a gas tube and a ZnO varistor Pspice-model considering the steepness of the wave-front were presented. The effects of various waveforms on the transient behaviors and firing volt-ages of a gas tube were modeled by controlled voltage source E controlled current source G and TABLE function of PSpice. And the nonlinear characteristics of a ZnO varistor were modeled by controlled voltage source E and H. To estimate the characteristics of the models proposed various waveforms specified in IEC Std. 1000310-4-5 were used in the simulation and the actual tests. The simulation results were compared with test results and showed good agreement.

  • PDF

A Gas Arrester Model Considering the Response Time Characteristics (응답시간특성을 고려한 가스어레스터 모델)

  • Park, Y.H.;Song, J.Y.;Kil, G.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.367-369
    • /
    • 1997
  • The process of designing protective circuits for signal lines usually consists of a time-consuming trial-and-error procedure, which also requires expensive equipment. However, computer simulation can drastically reduce the costs and time of design procedures based on experimental validation. In this study a gas arrester Pspice-model considering the response time characteristics is presented. The effects of various waveforms on the transient behaviors and firing voltages of a gas arrester were modeled by controlled voltage source E and TABLE function of PSpice, respectively. To estimate the characteristics of the gas arrester model proposed, three different voltage waveforms were used in the simulation and the measurement. The results of the computer simulation are in Rood agreement with the results of the experimental analysis.

  • PDF

Pspice Simulation for Nonlinear Components and Surge Suppression Circuits (비선형 소자 및 서지억제회로의 Pspice 시뮬레이션)

  • Lee, Bok-Hui;Gong, Yeong-Eun;Choe, Won-Gyu;Jeon, Deok-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.477-486
    • /
    • 2000
  • This paper presents Pspice modeling methods for spark gaps and ZnO varistors and describes the application for the two-stage surge suppression circuit which was composed of the nonlinear components. The simulation modelings of nonlinear components were conducted on the basis of the voltage and current curves measured by the impulse current with the time-to-crest of $1~50 \mus$ and the impulse voltage with the rate of the time-to-crest of 10, 100 and 1000 V/\mus$. The firing voltages of the spark gap increased with increasing the rate of the time-to-crest of impulse voltage and the measured data were in good agreement with the simulated data. The I-V curves of the ZnO varistor were measured by applying the impulse currents of which time-to-crests range from 1 to $50 \mus$ and peak amplitudes from 10 A to 2 kA. The simulation modeling was based on the I-V curves replotted by taking away the inductive effects of the test circuit and leads. The meximum difference between the measured and calculated data was of the order of 3%. Also the two-stage surge suppression circuit made of the spark gap and the ZnO varistor was investigated with the impulse voltage of $10/1000\mus$$mutextrm{s}$ wave shape. The overall agreement between the theoretical and experimental results seems to be acceptable. As a consequence, it was known that the proposed simulation techniques could effectively be used to design the surge suppression circuits combined with nonlinear components.

  • PDF