• Title/Summary/Keyword: PSU%

Search Result 520, Processing Time 0.026 seconds

Effects of temperature and salinity on egg development and larval settlement of an invasive ascidian species, Herdmania momus (Savigny, 1816)

  • Park, Juun;Lee, Yun-Sik;Kim, Donghyun;Shin, Sook
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.625-633
    • /
    • 2020
  • The effects of temperature and salinity on egg development and settlement of the ascidian Herdmania momus were investigated. Adult specimens were collected from the Dodu Yacht facility in Jeju Island, Korea(33°30'30.54"N, 126°27'55.46"E) in August 2018. Egg development and larval settlement were observed and recorded at 8 h intervals using a stereomicroscope, under nine temperature (10, 13, 16, 19, 22, 25, 28, 31, and 34℃), and four salinity regimens (28, 30, 32, and 34 psu). The highest hatching rate (82.8±7%) was observed at 32 psu and 25℃ and the lowest hatching rate (1.0±2%) was at 34 psu and 13℃. The developmental rate (0.222±0.0994) was highest at 28 psu and 28℃, and lowest (0.016±0.008) at 30 psu and 13℃. The highest settlement success rate (77.1±5%) was at 32psu and 25℃ and the lowest(0.1±1.0%) was at 30psu, and 13℃. The rate of settlement(0.080±0.000) was highest at 28psu and 28℃, and lowest(0.013±0.000) at 30psu and 13℃. Both hatching and settlement success rates increased as temperature increased and tended to decrease beyond an optimal temperature range. Herdmania momus preferred 30-34 psu salinity and 22-25℃ temperature. This study provides baseline information about the life history of H. momus, and important data to control the damage caused by the increase in number and distribution of this invasive ascidian.

Effects of Water Temperature and Salinity on the Growth and Survival of Larvae and Juvenile of Platycephalus indicus (수온과 염분이 양태 자치어의 성장과 생존에 미치는 영향)

  • Jin Lee;Ji-Won Yun;Sung-Hoon Lee;Kyeong Ho Han
    • Korean Journal of Ichthyology
    • /
    • v.35 no.1
    • /
    • pp.39-43
    • /
    • 2023
  • The water temperature and salinity have an important effect on the growth and survival of rearing fish. This study investigates the effect of water temperature and salinity on larvae and juveniles of Platycephalus indicus. The experimental water temperature was set to 13, 16, 19, 22, and 25℃, respectively, and the salinity was set to 7, 14, 21, 28, and 32 psu, respectively. Ten individuals were randomly collected daily and measured the total length using a stereo microscope. The growth rate was the highest at 25℃ (21.62±0.14 mm), 28 psu (15.02±0.05 mm) and the lowest at 13℃ (7.04±0.05 mm), 7 psu. The survival rate was the highest at 22℃ (69.2%), 32 psu (84.1%) and the lowest at 13℃ (15.1%), 7 psu. This study demonstrates that the water temperature and salinity affected the survival and growth of Platycephalus indicus larvae and the juvenile.

Plasma Stress Responses in Juvenile Red-Spotted Grouper (Epinephelus akaara) exposed to Abrupt Salinity Decrease

  • Lee, Jang-Won;Kim, Hyung Bae;Baek, Hea Ja
    • Development and Reproduction
    • /
    • v.20 no.3
    • /
    • pp.187-196
    • /
    • 2016
  • The objective of the current study was to determine acute plasma stress responses in two size groups of juvenile Epinephelus akaara (average body weight: $8.4{\pm}2.1$ and $3.3{\pm}0.6g$; 150 and 120 days after hatch, respectively) exposed to abrupt salinity drops (from 34 practical salinity unit, PSU seawater to 18, 10 PSU (experiment 1) or 26, 18, 10 PSU (experiment 2), respectively). Plasma glucose, glutamic oxalate transaminase, glutamic pyruvate transaminase, red blood cell counts, and gill histology were determined during 72 h exposure. Significantly increased plasma glucose, glutamic oxalate transaminase levels, and red blood cell counts were observed in fish exposed to 18 or 10 PSU. Histological changes, such as hyperplasia and lifting of epithelium in the gill secondary lamellae, were also observed in fish exposed to 18 or 10 PSU at 72 h post-drop. E. akaara exposed to sudden salinity drops to 18 or 10 PSU still seems to undergo the primary adjustment phase before fish reaches a new homeostasis, whereas fish exposed to 26 PSU seems to mount osmotic changes. Therefore, the no observed adverse effect levels for 72 h acute salinity challenge was 26 PSU in our study, and salinity drop to 18 PSU and below can possibly cause acute adverse effect, in which fish could be vulnerable to additional stresses such as a temperature changes or handling stress.

Oxygen Consumption and Blood Physiology of Olive Flounder Paralichthys olivaceus Subjected to Salinity Changes (염분 변화에 따른 넙치(Paralichthys olivaceus)의 산소 소비율과 혈액 성상)

  • Oh, Sung-Yong;Jeong, Yu Kyung;Lee, Geun Su;Kang, Pil Jun;Park, Hye Mi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.4
    • /
    • pp.620-627
    • /
    • 2020
  • Oxygen consumption and blood physiology of olive flounder Paralichthys olivaceus (mean body weight 106.6±6.8 g, mean±SD) was investigated at salinities of 34.0 (control), 33.7, 33.3, 32.6, 31.3, 28.6, 23.1, 12.2 and 0.0 psu at 20.0℃, respectively. Stepwise salinity changes (34.0→33.7→33.3→32.6→31.3→28.6→23.1→12.2→0.0 psu) with an interval of 24 h for each salinity induced a significant (P<0.05) increase of oxygen consumption rate (OCR) in fish exposed from 31.3 to 0.0 psu compared to that of control fish. The maximum OCR was found in fish exposed to 23.1 psu, which was accompanied by 36.2% higher energy consumption than the control fish. Fish exposed to each salinity for 24 h induced a significant decrease of blood plasma Na+ in 0.0 psu and Cl- in 12.2 and 0.0 psu (P<0.05), and increase of plasma glutamic oxaloacetic transaminase (GOT) in 0.0 psu compared to the control fish (P<0.05). The results of this experiment show that P. olivaceus exposed to concentrations below 31.3 psu requires more energy costs to adapt to salinity changes than 34.0 psu under our experimental conditions.

Effect of Salinity on Survival, Oxygen Consumption and Blood Physiology of Korean Rockfish Sebastes schlegelii (조피볼락 Sebastes schlegelii의 생존율, 산소 소비율과 혈액 성상에 미치는 염분의 영향)

  • Oh, Sung-Yong;Kim, Chong-Kwan;Jang, Yo-Soon;Choi, Hee-Jung;Myoung, Jung-Goo
    • Ocean and Polar Research
    • /
    • v.36 no.2
    • /
    • pp.135-143
    • /
    • 2014
  • The effect of salinity on the survival, oxygen consumption and blood physiology of Korean rockfish Sebastes schlegelii (body weight $97.4{\pm}1.7g$, $mean{\pm}SD$) was investigated at nine different salinities of 33.4 (control), 33.1, 32.8, 32.2, 31.0, 28.7, 23.9, 14.5 and 3.8 psu, respectively. Survival and blood physiology were measured at each salinity in two separate trials of 96 and 24 hr duration, respectively. Oxygen consumption rate (OCR) was determined at stepwise salinity exposure ($33.4{\rightarrow}33.1{\rightarrow}32.8{\rightarrow}32.2{\rightarrow}31.0{\rightarrow}28.7{\rightarrow}23.9{\rightarrow}14.5{\rightarrow}3.8$ psu) with an interval of 24 hr for each salinity. No death of fishes were observed in the range of 33.4 to 14.5 psu, but the survival rate was reduced to 26.7% at 3.8 psu after 96 hr. The OCRs were not significantly different in the range 33.4 to 28.7 psu (p > 0.05), but significantly increased until 14.5 psu and then drastically decreased at 3.8 psu compared to the control (p < 0.05). The concentrations of plasma $Na^+$ and $Cl^-$ were significantly lower in fish exposed at 3.8 psu compared to the control (p < 0.05). The results of this study provide evidence that S. schlegelii exposed to concentrations below 23.9 psu show significant physiological responses to tolerate salinity changes under the experimental conditions we established.

The Characteristics of Fishing Ground in the Adjacent Sea of Naro Island (2) - Seasonal Variation of Watermass - (나로도 주변해역의 어장학적 특성 (2) -수괴의계절변화 -)

  • 김동수;주찬순;박주삼
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.1
    • /
    • pp.19-26
    • /
    • 2003
  • In order to investigate the seasonal variation of watermass in the adjacent sea of Naro Island, oceanographic observation on the fishing grounds were carried out by the training vessel of Yosu National University on winter, spring, summer, and autumn in 2000. The results obtained are summarized as follows ; 1) the watermass in the fishing ground were divided into the coastal water (30.0∼31.4psu), mixing water (31.5∼32.9psu) and the offshore water (33.0∼35.0psu) according to the distribution of salinity from T-S diagram plotted all salinity data observed on winter, spring, summer, and autumn in 2000. 2) the ranges of temperature and salinity were from 4.$3\circ_C$ to 10.1$^{\circ}C$ and from 33.1psu to 34.9psu in winter, from 8.$1\circ_C$ to 13.$7\circ_C$ and from 33.1psu to 34.3psu in spring, from 14.5$^{\circ}C$ to 24.$2\circ_C$ and from 30.5psu to 34.1psu in summer, and from 14.$5\circ_C$ to 18.$6\circ_C$ and from 30.1psu to 34.0psu in autumn, respectively. 3) the distribution of watermass in the fishing ground varied largely each seasons, but a general tendency on the distribution was obtained. That is, in winter and spring the offshore water was distributed most widely and in summer the coastal and mixing water occupied the fishing ground but in autumn the mixing water prevailed. 4) variation of temperature and salinity were appeared between the surface and 20m layer in the sea aduacent to Naro Island. Therefore, in the summer the thermocline were made between surface and 20m layer with vertical gradients of 4.$0\circ_C$/7m.

Optimum environmental condition of live container for long distance transport in live abalone Haliotis discus hannai (북방전복, Haliotis discus hannai의 장거리 수송을 위한 적정 수온 및 염분 조건)

  • Yang, Sung-Jin;Myeong, Jeong-In;Park, Jung-Jun;Shin, Yun-Kyung
    • The Korean Journal of Malacology
    • /
    • v.30 no.4
    • /
    • pp.363-370
    • /
    • 2014
  • We investigated the survival rate by water temperature and salinity, physiological rhythm and morphological change of live abalone to get to know optimum water temperature and salinity suitable for long-distance transportation of live abalone. At $8^{\circ}C$ and above, 96-100% of survival rate was shown at all experiment groups. At $6^{\circ}C$, 66% of abalones survived in normal seawater but they showed 0% of survival rate at $30{\pm}0.5psu$ and $26{\pm}0.5psu$ of salinity at the same water temperature. There was no significant difference of oxygen consumption rate for a week between the seawater and $30{\pm}0.5psu$. Also, a positive correlation was shown between salinity and water temperature and the oxygen consumption rate was slightly higher at $30{\pm}0.5psu$ than seawater. Thinned epithelial layers and expansion of lymph sinus were observed less than $30{\pm}0.5psu$ or below $6^{\circ}C$ of temperature. This result shows that the optimum level of water temperature and salinity is considered to be $6-8^{\circ}C$ and more than $30{\pm}0.5psu$ respectively.

Stress Responses of Olive Flounder (Paralichthys olivaceus) to Salinity Changes (염분변화에 따른 넙치(Paralichthys olivaceus)의 스트레스 반응)

  • Park, Hyung-Jun;Min, Byung-Hwa
    • Korean Journal of Ichthyology
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • We tried to determine the optimum salinity for a cultured of olive flounder (Paralichthys olivaceus) by investigating after exposing the fish at different salinity (10, 15, 20 and 25 psu) for 24 and 48 hours compared with control group (fish before transfer to experimental tank). As a control groups, we compared an analyzed with other experimental groups using olive flounder in natural sea water. Hematological parameters including hematocrit (Ht) and hemoglobin (Hb), cortisol and glucose, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), $NH_3$, osmolality, total protein (TP), $Na^+$, $K^+$ and $Cl^-$ mostly exhibited significant changes at 10 and 15 psu groups compared with control groups for 24 and 48 hours exposed. Plasma SOD (superoxide dismutase) and CAT (catalase) activity also increased with experimental groups (10 and 15 psu) compared to the control groups. The expression of HSP70 mRNA was also higher at low-salinity (10 and 15 psu) than at control group. In particular, after 24 hours exposed, it expression to 15 psu groups showed a significant difference compared to the control group. However, after 48 hours exposed, it expression was higher in the 10 psu groups than the control. It is assumed that the changes in the hematological responses and hormone, homeostasis and metabolism were resulted in to protect fish body from stress. Based on these results, we are expected that it will be used as basic data for the culture of olive flounder prepared for low salinity.

Effects of low salinity stresses on the physiology of disc abalone, Haliotis discus discus (저염분 자극에 의한 둥근전복, Haliotis discus discus의 생리학적 변화)

  • Jwa, Min-Seok;Kang, Kyung-pil;Choi, Mi-Kyung;Yeo, In-Kyu
    • Journal of fish pathology
    • /
    • v.22 no.3
    • /
    • pp.293-303
    • /
    • 2009
  • Effects of stress on the low salinity stress were examined in the pacific abalone Haliotis discus discus. Changes in survival rate, hemolymph count, antioxidant enzyme activities (catalase: CAT and superoxide dismutase: SOD), respiratory burst activity, phenoloxidase activity, lysozyme activity and expression of heat shock protein 70 (HSP70) mRNA were measured 0, 3, 6, 12, 24 or 48hours after low salinity treatment with 25, 30, 33 and 35 psu. Survival rates of pacific abalone were 100% at 33 and 35 psu, but 93 and 97% at 25 and 30 psu for 48 hours, respectively. Hemolymph counts decreased in the time elapsed-dependent way at all of the experimental groups. At low salinity, 25 and 30 psu, SOD and CAT activity increased compared to the experimental group of 33 psu. Moreover, respiratory burst activities of the pacific abalone seemed to have no effect on low salinity stress at any experimental group. However, phenoloxidase activity is an important component of the defence against pathogen that was decreased in a reduction of salinity dependent way. Lysozyme activity also immediately reduced at 25 psu experimental group for 48 h. The HSP70 mRNA was weakly expressed at 33 psu, but strongly detectable at 25 psu experimental group. The HSP 70 mRNA expression in gill increased in the time elapsed-dependent way at 25 psu experimental group and then recovered at 48 h. These results suggest that low salinity stress give rise to inhibitory action of immune system as a result of the decrease of phenoloxidase and lysozyme activity in the pacific abalone, especially.

Effect of Food and Salinity on Larval Growth and Survival of the River Puffer, Takifugu obscurus (황복, Takifugu obscurus의 초기 발달 동안 성장 및 생존에 있어 먹이와 염분의 효과)

  • 강희웅;강덕영;조기채;이진호;박광재;김종화
    • Journal of Aquaculture
    • /
    • v.17 no.3
    • /
    • pp.221-227
    • /
    • 2004
  • In the present study, we investigated the effects of food and salinity on growth and survival of river puffer, Takifugu obscurus offsprings in indoor land-based tank during the early development. In the food experiment, the river puffer larvae (TL 8.7$\pm$0.1 mm, BW 20.0$\pm$3.2 mg) were fed with tubificid, Limnodrilus gotoi, water flea, Daphnia carinata, mysid, Neomysis awatschensis, Manila clam, Ruditapes philippinarum and artificial food together Artemia nauplii for 30 days, and the growth and the survival of larvae were investigated. In the salinity experiment, the river puffer larvae and juvenile at three stages (Stage I: TL 5.8$\pm$0.4 mm; Stage II: TL 12.0$\pm$0.2 mm, Stage III: TL 44.5$\pm$0.7 mm) were supplied with Artemia nauplii, water flea and/or artificial food and were reared in 0, 10, 20 and 30 psu at respective stages. The results shows that the growth rates of larvae feeding with artificial food and tubificid together Artemia nauplii were higher than those of larvae in other groups, but the survival rates of larvae feeding with water flea and mysid together Artemia nauplii were higher than those of larvae in other groups. In salinity, the results shows that the growth and survival rates of offsprings were significantly higher in 10∼20 psu than those in 0 and 30 psu at Stage I and n. At Stage III, the growth and the survival rates were the highest in 20 psu, but the lowest in 0 psu. However, it should be noted that the rates in 0 and 30 psu were significantly enhanced at Stage III in comparison with those at Stage I and II. Therefore, it is concluded that river puffer, T. obscurus is euryhaline marine species, which can normally grow and live at salinities from 0 to 30 psu, and that a combinative supplement with Artemia nauplii and water flea, D. carinata may confer an advantage on growth and survival of the river puffer offsprings in indoor land-based tank.