• 제목/요약/키워드: PSSM

검색결과 2건 처리시간 0.019초

Small CNN-RNN Engraft Model Study for Sequence Pattern Extraction in Protein Function Prediction Problems

  • Lee, Jeung Min;Lee, Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권8호
    • /
    • pp.49-59
    • /
    • 2022
  • 본 논문에서는 2020년 기준 단백질 서열을 이용한 기능과 구조 예측 분야에서 가장 많이 사용되고 있는 딥러닝 모델인 CNN과 LSTM/GRU 모델을 동일한 조건 하에 비교 평가한 연구를 토대로 새로운 효소 기능 예측 모델인 PSCREM을 설계하였다. CNN 합성곱 시 누락되는 세부 패턴을 보존하기 위하여 서열 진화정보를 이용하였으며 중첩 RNN을 통해 기능적으로 중요한 의미를 가지는 아미노산 간의 관계 정보를 추출하고 특징 맵 제작에 참조하였다. 사용된 RNN 계열의 알고리즘은 LSTM과 GRU로 보통 stacked RNN 기법으로 100 units 이상 2~3회 쌓는 것이 일반적이나 본 논문에서는 10, 20 unit으로 구성한 뒤 중첩시켜서 특징 맵 제작에 사용하였다. 모델에 들어가는 데이터는 단백질 서열 데이터로 PSSM profile로 가공한 뒤 사용되었다. 실험 결과 효소 번호 첫 번째 자리를 예측하는 문제에 대해 86.4%의 정확도를 나타냄을 입증하였고, 효소 번호 3번째 자리까지 예측 정확도 84.4%의 성능을 내는 것을 확인하였다. PSCREM은 Overlapped RNN을 통해 단백질 기능에 관련된 고유 패턴을 더 잘 파악하며 Overlapped RNN은 단백질 기능 및 구조 예측 추출 분야에 새로운 방법론으로서 제안된다.

Improved Prediction of Coreceptor Usage and Phenotype of HIV-1 Based on Combined Features of V3 Loop Sequence Using Random Forest

  • Xu, Shungao;Huang, Xinxiang;Xu, Huaxi;Zhang, Chiyu
    • Journal of Microbiology
    • /
    • 제45권5호
    • /
    • pp.441-446
    • /
    • 2007
  • HIV-1 coreceptor usage and phenotype mainly determined by V3 loop are associated with the disease progression of AIDS. Predicting HIV-1 coreceptor usage and phenotype facilitates the monitoring of R5-to-X4 switch and treatment decision-making. In this study, we employed random forest to predict HIV-1 biological phenotype, based on 37 random features of V3 loop. In comparison with PSSM method, our RF predictor obtained higher prediction accuracy (95.1% for coreceptor usage and 92.1% for phenotype), especially for non-B non-C HIV-l subtypes (96.6% for coreceptor usage and 95.3% for phenotype). The net charge, polarity of V3 loop and five V3 sites are seven most important features for predicting HIV-1 coreceptor usage or phenotype. Among these features, V3 polarity and four V3 sites (22, 12, 18 and 13) are first reported to have high contribution to HIV-1 biological phenotype prediction.