• Title/Summary/Keyword: PSSC구조

Search Result 6, Processing Time 0.014 seconds

Comparison of Reliability of PSSC Girder Bridge for Different Limit States (PSSC 거더 교량의 한계상태별 신뢰도 비교)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.171-180
    • /
    • 2007
  • Reliability analysis of prestressed steel and concrete(PSSC) girders is conducted for deflection, stress and moment strength limit state. PSSC girder has strong advantages in terms of construction cost and vertical clearance for the span length of over 40 meters. In this paper, example PSSC girders with different span lengths, section dimensions and design stress levels are designed and analyzed to calculate the midspan deflection, stress and the section moment strength. Deflection limit state, stress limit state and strength limit state functions are assumed and the reliability indexes are obtained by Monte-Carlo simulation and Rackwitz-Fiessler procedure. The results show that the reliability of PSSC girder for deflection limit state is appropriately higher than the stress limit state and the reliability for moment strength is significantly conservative.

Analysis of Prestress Effect and Reliability of PSSC Composite Girder Bridge (PSSC 합성거더 교량의 프리스트레스 효과 및 신뢰도 해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.214-224
    • /
    • 2008
  • Member force, strain and stress distribution of a section are obtained for optimized standard 25m~45m PSSC composite bridge subjected to dead and live load in order to interpret the effect of prestressing and deformation of tendon. The stress and strain distribution and moment capacity are obtained for both noncomposite and composite section and for allowable stress limit state, yield limit state and strength limit state. Reliability analysis is conducted after assuming limit states for stress and flexural strength. The reliability index for standard PSSC composite bridge which is designed to satisfy the allowable stress for flexural strength are higher than 3.5 which is required reliability indexes on American code for LRFD. Reliability of PSSC girder which is designed based on allowable stress of bridge design code is high for flexural strength.

Analysis of Nonlinear Behavior and Reliability of PSSC Composite Girder Bridge (PSSC 합성거더 교량의 비선형 거동 분석 및 신뢰도 해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.158-166
    • /
    • 2008
  • Member force, strain and stress distribution of a section are obtained for prestressed steel and concrete(PSSC) composite bridge subjected to dead and live load in order to interpret the effect of prestressing and deformation of tendon. The stress and strain distribution and moment capacity are obtained for both noncomposite and composite section and for allowable stress limit state, yield limit state and strength limit state. Reliability analysis is conducted after assuming limit states for deflection, stress and flexural strength. Comparing that the reliability index for stress is near 0 for example section which is designed to satisfy the allowable stress exactly, the reliability indexes for deflection and flexural strength are high. Reliability of PSSC girder which is designed based on allowable stress of bridge design code is high for deflection and flexural strength.

Bond Behavior of Thin-Walled Rectangular Profiled Steel Sheet Concrete Short Columns (절곡된 단면을 갖는 얇은 판요소 콘크리트 충전 각형강관 기둥의 부착거동)

  • Yun, Hyun-Do;Park, Wan-Shin;Han, Byung-Chan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.233-241
    • /
    • 2005
  • The paper is presented experimental study results on bond stress between profiled steel and concrete in Profiled SPC(Profiled Steel Plate Concrete) rectangular steel tubes through an experimental program in which 13 pull-out specimens were tested. Advantages and class of composite members and current problems of construction work are noted, past research of PSSC is described. An experimental study is described and evaluated. The bond capacity is interrelated with slip at the steel concrete interface. The factors influencing the mechanism of bond stress transfer were the cross section shape, length/diameter, diameter/thickness and environmental parameters (temperature, moisture). The results of experimental program indicated that the force transfer could be characterized into two regions The first region was governed by bond with no relative slip between the profiled steel and concrete. The second region occurs after the chemical debonding. Bond stress transfer in this region was governed by frictional resistance between profiled steel and concrete and cross section shapes. The important factors influencing the magnitude of frictional resistance are the profiled steel shapes, length/diameter and environmental parameters. (temperature, moisture)

Optimal Tension Forces of Multi-step Prestressed Composite Girders Using Commercial Rolled Beams (상용압연 형강을 이용한 콘크리트 합성거더의 다단계 긴장력 최적설계)

  • Shin Yung-Seok;Jung Heung-Shi;Kim Young-Woo;Park Jea-Man
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.115-124
    • /
    • 2006
  • The 1st and 2nd tension forces of the PSSC(Prestressed Steel and Concrete) grider constructed with commercial rolling beams and concrete are optimally designed. The design variables are the 1st and 2nd tension forces due to multi-step prestressing and live load. The objective function is set to the maximum live load. Design conditions are allowable stresses at the top and bottom of slab, beam and infilled concrete due at the several construction stages. A Matlab based optimization program is developed. The results show that the tendon position as well as concrete compression strength have significant influence on the beam strength.

Optimal Tension Forces of Multi-step Prestressed Composite Girders Using Commercial Rolled Beams (상용압연 형강과 콘크리트 합성거더의 다단계 긴장력 최적설계)

  • 정홍시;김영우;박재만;신영석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.95-102
    • /
    • 2004
  • The 1st and 2nd tension forces of the PSSC(Prestressed Steel and Concrete) girder constructed with commercial rolling beams and concrete are optimally designed. The design variables are the 1st and 2nd tension forces due to multi-step prestressing and live load. The objective function is set to the maximum live load. Design conditions are allowable stress at the top and bottom of slab, beam and infilled concrete due to a construction step. An Optimization of Matlab based program Is developed. The results show that the tendon position and concrete compression strength etc are important.

  • PDF