• Title/Summary/Keyword: PSPICE Circuit Model

Search Result 45, Processing Time 0.031 seconds

A Study on the Characteristic of LLCC Type Resonant Inverter for Power Saving Type of Electronic Ballast (절전형 전자식 안전기용 LLCC형 공진형 인버터의 특성에 관한 연구)

  • 임중열;신일철;서기열;강병복;윤형상;최장균;차인수
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.216-221
    • /
    • 1997
  • At present, high frequency electronic ballast are widely used to drive the fluorescent lamp at high frequency for improving light quality. The electronic ballast mainly consist of an inverter stage with a load resonant circuit. This paper derives a lamp model consist of a voltage equation and a current equation. The proposed model is useful for an engineer to determine circuits and to analyze the performance of electronic ballast with high frequency operation. Simulation with PSPICE and experimentator and the high power factor of the proposed topology.

  • PDF

Electric Ballast Analysis by Piezoelectric Transformer and CCFL Modeling (압전변압기와 CCFL 모델링에 의한 전자식 안정기 해석)

  • Hwang L. H.;Jang E. S.;Shin Y. H.;Cho S. R.;Cho M. T.;Ahn I. S.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.237-240
    • /
    • 2002
  • A CCFL model for high frequency dimming electronic ballast simulation is presented in this paper. The model can be utilized for an electronic ballast simulation with continuous dimming and transient mode simulation such as step dimming. The piezoelectric transformer Is evaluated using an AC analysis. The electronic ballast composed of piezoelectric transformers and ZVS inverter was implemented. It enables a fluorescent lamp to be fumed on stably. Simulation of a high frequency electronic ballast which operates a fluorescent Imp at high frequency is proposed. Simulation is carried out using PSPICE program to illustrate the performance of the circuit

  • PDF

Design and analysis of Push-pull type Resonant Inverter for CCFL Drive (CCFL구동용 Push-Pull 방식 공진형 인버터의 특성해석)

  • Kim, Cherl-Jin;Ji, Jae-Geun;Jang, Jae-Wan;Lee, Hee-Heung;Kim, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1184-1186
    • /
    • 2002
  • Recently, according to the industrial development relative to multimedia, demand of display system is radically increase, thus development for power supply of back-lighting is advanced lively. Fluorescent lamp operated at high frequency by the electronic ballast provide benefits like unnoticeable flicker effect and higher luminous efficiency. This paper presents analysis of Push-Pull type resonant inverter for CCFL drive for stable characteristic and life improvement of fluorescent lamp operated at high frequency. Also it has proposed design procedure of Current-Fed type resonant inverter. On the basis of equivalent circuit, component characteristic and suitable region of operation frequency from simulation using Matlab and Pspice is predicted. Suitability of applied equivalent model and validity of design process from the experimental results with CCFL inverter.

  • PDF

Fast Partial Shading Analysis of Large-scale Photovoltaic Arrays via Tearing Method

  • Zhang, Mao;Zhong, Sunan;Zhang, Weiping
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1489-1500
    • /
    • 2018
  • Partial shading analysis of large-scale photovoltaic (PV) arrays has recently become a theoretically and numerically challenging issue, and it is necessary for PV system designers. The main contributions of this study are the following: 1) A PSIM-based macro-model was employed because it is remarkably fast, has high precision, and has no convergence issues. 2) Three types of equivalent macro-models were developed for the transformation of a small PV sub-array with uniform irradiance to a new macro-model. 3) On the basis of the proposed new macro-model, a tearing method was established, which can divide a large-scale PV array into several small sub-arrays to significantly improve the efficiency improvement of a simulation. 4) Three platforms, namely, PSIM, PSpice, and MATLAB, were applied to evaluate the proposed tearing method. The proposed models and methods were validated, and the value of this research was highlighted using an actual large-scale PV array with 2420 PV modules. Numerical simulation demonstrated that the tearing method can remarkably improve the simulation efficiency by approximately thousands of times, and the method obtained a precision of nearly 6.5%. It can provide a useful tool to design the optimal configuration of a PV array with a given shading pattern as much as possible.

Correlation of Peak Time Shift in Blood Pressure Waveform and PPG Based on Compliance Change Analysis in RLC Windkessel Model

  • Choi, Wonsuk;Cho, Jin-Ho
    • Current Optics and Photonics
    • /
    • v.1 no.5
    • /
    • pp.529-537
    • /
    • 2017
  • We explored how changes in blood vessel compliance affected the systolic rise time (SRT) of the maximum blood pressure (BP) peak wave and the diastolic fall time (DFT) of the minimal BP peak wave, compared to photoplethysmograpic (PPG) parameters, using a two-compartment, second-order, arterial Windkessel model. We employed earlier two-compartment Windkessel models and the components thereof to construct equivalent blood vessel circuits, and reproduced BP waveforms using PSpice technology. The SRT and DFT values were obtained via circuit simulation, considering variations in compliance (the dominant influence on blood vessel parameters attributable to BP changes). And then performed regression analysis to identify how compliance affected the SRT and DFT. We compared the SRTs and DFTs of BP waves to the PPG values by reference to BP changes in each subject. We confirmed that the time-shift propensities of BP waves and the PPG data were highly consistent. However, the time shifts differed significantly among subjects. These simulation and experimental results allowed us to construct an initial trend curve of individual BP peak time (measured via wrist PPG evaluations at three arm positions) that facilitated accurate individual BP estimations.