• Title/Summary/Keyword: PSLR

Search Result 24, Processing Time 0.024 seconds

Performance Analysis of SAR System Using Radar Target Simulation Equipment (표적모의장치를 이용한 SAR 장비의 성능 분석)

  • Kweon, Soon-Koo;Yeo, Hwan-Yong;Park, Sung-Min;Han, Ji-Hoon;Jung, Chang-Sik;Kim, Ki-Wan;Shin, Hyun-Ik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.2
    • /
    • pp.118-127
    • /
    • 2018
  • In this work, we have designed and manufactured radar target simulation equipment for the performance analysis of synthetic aperture radar(SAR) systems. First, we have explained the function and performance specification of the target simulation equipment and point target scenario generation for validation of the SAR system. In addition, we have developed a simple and accurate calibration method for the time delay of the SAR system using the manufactured target simulation equipment. We have analyzed the point target impulse response function of the SAR image acquired using the SAR system and the target simulation equipment. It was observed that the measured peak to side lobe ratio(=-13.25 dB) and resolution(=0.49 m) are in good agreement with the corresponding theoretical values.

Development and application of simulator for spotlight SAR image formation and quality assesment using RMA (RMA를 이용한 Spotlight SAR 영상형성 및 품질평가를 위한 시뮬레이터 개발 및 구현)

  • Kwak, Jun-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.183-194
    • /
    • 2011
  • Synthetic aperture radar (SAR) is widely used because of high resolution imaging capability in all weather and day/night condition. In this paper development of Spotlight SAR simulator is proposed for image quality analysis. Proposed SAR simulator is based on the SAR system design parameters so that SAR image performance can be expected which is essential throughout the full system development procedure from the initial concept design stage to the final in-flight calibration and validation stage. The raw data of ideal point target is first generated by taking account of the flight and imaging geometry and the various SAR system design parameters, and the Spotlight image formation algorithm is implemented in order to obtain the point target response. Finally the image quality of the generated raw data is analyzed in terms of spatial resolution, peak to sidelobe ratio and integrated sidelobe ratio.

Comparison of Performance of Measuring Method of VIS/NIR Spectroscopic Spectrum to Predict Soluble Solids Content of 'Shingo' Pear (VIS/NIR 스펙트럼 측정모드에 따른 신고 배의 당도 예측성능 비교)

  • Suh, Sang-Ryong;Lee, Kyeong-Hwan;Yu, Seung-Hwa;Yoo, Soo-Nam;Choi, Yeong-Soo
    • Journal of Biosystems Engineering
    • /
    • v.36 no.2
    • /
    • pp.130-139
    • /
    • 2011
  • Three modes of VIS/NIR spectroscopic measurement (interactance and two modes of transmission) were compared for their ability to estimate soluble solids content (SSC) of 'Shingo' pear non-destructively. The two transmission modes are named as full- and semi-transmission, where full-transmission stands for passing of light through abdomen of pear and semi-transmission is for transit of light mainly through flesh of pear. For comparison of the modes, prediction models developed from the collected spectroscopic data by the three modes were developed and tested for comparison of their performance. Partial least square regression (PSLR) was used to develop the models and various pre-processing methods were applied to develop models of high accuracy. The experiment was repeated three times with pears produced in different regions. The experiments resulted that selection of pre-processing is very important to attain accurate models, and multiplicative scatter correction (MSC) was selected as a pre-processor of high accuracy for the three modes of spectroscopic measurement in every experiment. Except for MSC, different group of pre-processing methods were selected for the three modes of measurement in every experiment without any tendency to the tested modes of measurement and pears of different produced region. Root-mean-square error of prediction (RMSEP) of prediction models of the three modes of measurement using prepreocessor of MSC were compared for their ability to estimate SSC. The models resulted in ranges of $0.37{\sim}0.57^{\circ}Brix$, $0.65{\sim}0.72^{\circ}Brix$, $0.39{\sim}0.51^{\circ}Brix$ for interactance, full- and semi-transmission, respectively. As shown, modes of semi-transmission and interactance resulted about the same level of prediction accuracy and were noted as modes of high performance to predict SSC.

Analysis on Spectral Regrowth of Bandwidth Expansion Module by Quadrature Modulation Error in Digital Chirp Generator (디지털 첩 발생기에서의 직교 변조 오차에 의한 대역 확장 모듈에서의 스펙트럴 재성장 분석)

  • Kim, Se-Young;Sung, Jin-Bong;Lee, Jong-Hwan;Yi, Dong-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.761-768
    • /
    • 2010
  • This paper presents an effective method to achieve the wideband waveform for high resolution SAR(Synthetic Aperture Radar) using the frequency multiplication technique. And also this paper analyzes the root causes for the spectral regrowth due to 3rd-order intermodulation in chirp bandwidth expansion scheme using quadrature modulator and frequency multipliers. The amplitude and phase imbalance requirement are defined based on the simulation results in terms of quadrature channel imbalance. This minimizes the degradation of range resolution, peak sidelobe ratio and integrated sidelobe ratio. The wideband chirp generator using the frequency multiplier and memory map scheme was manufactured and the compensation technique was presented to reduce the spectral regrowth of SAR waveform by minimizing the amplitude and phase imbalance. After I and Q channel imbalance adjustment, the carrier level reduces -28.7 dBm to -53.4 dBm. Chirp signal with 150 MHz bandwidth at S-band expands to 600 MHz bandwidth at X-band. The sidelobe levels are reduced by about 8 to 9 dB by compensating the amplitude balance between I and Q channels.