• Title/Summary/Keyword: PSC 구조

Search Result 353, Processing Time 0.019 seconds

A Study on the Static and Fatigue Behavior of Steel-Confined Prestressed Concrete Girder (강재로 구속된 프리스트레스트 콘크리트 합성거더의 정적 및 피로거동)

  • Kim, Jung Ho;Park, Kyung Hoon;Hwang, Yoon Koog;Lee, Sang Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.725-736
    • /
    • 2004
  • A new type of girder, called steel-confined prestressed concrete girder (SCP girder), has been developed, which maximizes the structural advantages of concrete, steel, and PS tendon, and improves on the shortcomings of steel plate girder, PSC I-girder, and preflex girder bridge for use in the construction of middle- or long-span bridges. To verify the propriety of design, structural safety, and applicability of this girder, a static load test was carried out (Kim et al.., 2002). Since the main damage typically sustained by steel bridges results from the fatigue caused by the repetition of traffic loads, fatigue safety must therefore be guaranteed in applying the SCP girder in the construction of real bridges. In this study, a fatigue test was carried out to investigate fatigue behavior and provide basic data for fatigue design. Based on the fatigue test, the fatigue safety of the girder was estimated. For the fatigue test, 10-m specimens were designed for a standard-design truckload (DB-24). A static load test was also performed before the fatigue test to analyze the structural behavior of the specimens. After the fatigue test, outer steel plates were removed to observe the condition of the concrete in the girder.

Investigation on Applicability of 2400 MPa Strand for Posttensioned Prestressed Concrete Girders (포스트텐션 PSC 거더에 대한 2400 MPa급 강연선의 적용성 분석)

  • Park, Ho;Cho, Jae-Yeol;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.727-735
    • /
    • 2012
  • Recently, a high-strength strand of 2400 MPa was developed using domestic technologies. In 2011, KS D 7002 was revised to cover the newly developed high-strength strands to support their practical usage. Presently, however, discussions and evaluations are not sufficient on the mechanical properties of the strands and their performance in structural members. Also, there were no detailed reviews on the need to revise the current design code for practical use of the high-strength strands. In this study, flexural behavior of a member with the high-strength strands was estimated through sectional analysis and a review and comparison of the domestic and foreign design codes were conducted considering the analysis results. Also, the need for the revision of the design code was discussed. Such discussion especially focused on the estimation of the stress in strand, which related with various issues such as determination methods for yield point of strands, time-dependent loss of prestressing force, estimation of stress in strand at member failure, and net strain limit for ductile failure of member. The discussion revealed that some parts in the design code need a revision and the further studies are required.

Changes of Hysteresis Loop Characteristics of the Tendon Under Tensile Stress (Tendon의 인장응력에 따른 자기이력특성 변화의 측정)

  • Kang, Sunju;Son, Derac;Joh, Changbin;Lee, Jungwoo
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.123-128
    • /
    • 2015
  • The iron is an element having a high yield strength, mechanical hardness, good electrical conductivity, and also it has been used in various fields because of ease machining. In bridges have been used tendon made of a steel wire for large loads and light weight. Tension measurement of tendon employed in PreStressed Concrete (PSC) bridge is very important for the bridge safety check. NDT (Non-Destructive Testing) is essential for the safety check, however, magnetic NDT is difficult to apply due to the non-linear magnetization curve and hysteresis loop in the magnetic properties. In this work, for basic study of magnetic NDT application, we have constructed a B-H loop measuring system for 7-strand tendon of which diameter is 15.5 mm, and which can apply tensile stress up to 2.0 GPa. We have measured hysteresis loops of two kinds of tendons under different tensile stress. Amplitude permeability and maximum magnetic induction near knee show the most sensitive and high linearity depends on tensile stress. Relative amplitude permeability was decreased from 500 to 200 and maximum magnetic flux density changed 0.6 T.