• Title/Summary/Keyword: PSA level

Search Result 167, Processing Time 0.025 seconds

DEVELOPMENT OF AN INTEGRATED RISK ASSESSMENT FRAMEWORK FOR INTERNAL/EXTERNAL EVENTS AND ALL POWER MODES

  • Yang, Joon-Eon
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.459-470
    • /
    • 2012
  • From the PSA point of view, the Fukushima accident of Japan in 2011 reveals some issues to be re-considered and/or improved in the PSA such as the limited scope of the PSA, site risk, etc. KAERI (Korea Atomic Energy Research Institute) has performed researches on the development of an integrated risk assessment framework related to some issues arisen after the Fukushima accident. This framework can cover the internal PSA model and external PSA models (fire, flooding, and seismic PSA models) in the full power and the low power-shutdown modes. This framework also integrates level 1, 2 and 3 PSA to quantify the risk of nuclear facilities more efficiently and consistently. We expect that this framework will be helpful to resolve the issue regarding the limited scope of PSA and to reduce some inconsistencies that might exist between (1) the internal and external PSA, and (2) full power mode PSA and low power-shutdown PSA models. In addition, KAERI is starting researches related to the extreme external events, the risk assessment of spent fuel pool, and the site risk. These emerging issues will be incorporated into the integrated risk assessment framework. In this paper the integrated risk assessment framework and the research activities on the emerging issues are outlined.

Application of Event Tree Technique for Quantification of Nuclear Power Plant Safety (원자력발전소의 정량적인 안전 해석을 위한 사건수목 기법의 응용)

  • Kim, See-Darl;Jin, Young-Ho;Kim, Dong-Ha;Park, Soo-Yong;Park, Jong-Hwa
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.126-135
    • /
    • 2000
  • Probabilistic Safety Assessment (PSA) is an engineering analysis method to identify possible contributors to the risk from a nuclear power plant and now it has become a standard tool in safety evaluation of nuclear power plants. PSA consists of three phases named as Level 1, 2 and 3. Level 2 PSA, mainly focused in this paper, uses a step-wise approach. At first, plant damage states (PDSs) are defined from the Level 1 PSA results and they are quantified. Containment event tree (CET) is then constructed considering the physico-chemical phenomena in the containment. The quantification of CET can be assisted by a decomposition event tree (DET). Finally, source terms are quantitatively characterized by the containment failure mode. As the main benefit of PSA is to provide insights into plant design, performance and environmental impacts, including the identification of the dominant risk contributors and the comparison of options for reducing risk, this technique is expected to be applied to the industrial safety area.

  • PDF

Internal Event Level 1 Probabilistic Safety Assessment for Korea Research Reactor (국내 연구용원자로 전출력 내부사건 1단계 확률론적안전성평가)

  • Lee, Yoon-Hwan;Jang, Seung-Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.3
    • /
    • pp.66-73
    • /
    • 2021
  • This report documents the results of an at-power internal events Level 1 Probabilistic Safety Assessment (PSA) for a Korea research reactor (KRR). The aim of the study is to determine the accident sequences, construct an internal level 1 PSA model, and estimate the core damage frequency (CDF). The accident quantification is performed using the AIMS-PSA software version 1.2c along with a fault tree reliability evaluation expert (FTREX) quantification engine. The KRR PSA model is quantified using a cut-off value of 1.0E-15/yr to eliminate the non-effective minimal cut sets (MCSs). The final result indicates a point estimate of 4.55E-06/yr for the overall CDF attributable to internal initiating events in the core damage state for the KRR. Loss of Electric Power (LOEP) is the predominant contributor to the total CDF via a single initiating event (3.68E-6/yr), providing 80.9% of the CDF. The second largest contributor is the beam tube loss of coolant accident (LOCA), which accounts for 9.9% (4.49E-07/yr) of the CDF.

Expression and Purification of Recombinant Active Prostate-Specific Antigen from Escherichia coli

  • Jeong, Su-Jin;Lee, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.840-846
    • /
    • 2007
  • Human prostate-specific antigen(PSA), a 33 kDa serine protease with comprehensive homology to glandular kallikrein, is secreted from prostatic tissue into the seminal fluid and enters into the circulation. The level of PSA increases in the serum of patients with prostatic cancer and hence is widely employed as a marker of the disease status. In particular, an enzymatically active PSA that is a form cleaved at the N-terminal seven-amino-acids prosequence, APLILSR, of proPSA may play an important roll in the progression of prostate cancer. Thus, the presence of the active form would selectively discriminate the cancer from benign prostatic hyperplasia. In this study, we developed a convenient purification method for the acquisition of active PSA and proPSA. Recombinant proPSA and active PSA were expressed directly in Escherichia coli, easily and efficiently isolated from inclusion bodies, refolded, and purified. Moreover, the enzymatic activity of the recombinant active PSA was confirmed as serine protease using chromogenic chymotrypsin substrate. This purified active PSA could be further applied to scrutinize the biological or conformational characteristics of the protein and to develop specific diagnostic and/or therapeutic agents against prostate cancer.

Risk-Informed Optimization of Operation and Procedures for Korea Research Reactor (리스크정보 최적화를 통한 국내 연구용원자로의 안전성 향상)

  • Lee, Yoon-Hwan;Jang, Seung-Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.2
    • /
    • pp.43-53
    • /
    • 2022
  • This paper describes an attempt to improve and optimize the operational safety level of a domestic research reactor by conducting a probabilistic safety assessment (PSA) under full-power operating conditions. The PSA was undertaken to assess the level of safety at an operating research reactor in Korea, to evaluate whether it is probabilistically safe and reliable to operate, and to obtain insights regarding the requisite procedural and design improvements for achieving safer operation. The technical objectives were to use the PSA to identify the accident sequences leading to core damage, and to conduct sensitivity analyses based thereon to derive insights regarding potential design and procedural improvements. Based on the dominant accident sequences identified by the PSA, eight types of sensitivity analysis were performed, and relevant insights for achieving safer operation were derived. When these insights were applied to the reactor design and operating procedure, the risk was found to be reduced by approximately ten times, and the safety was significantly improved. The results demonstrate that the PSA methodology is very effective for improving reactor safety in the full-power operating phase. In particular, it is a highly suitable approach for identifying the deficiencies of a reactor operating at full power, and for improving the reactor safety by overcoming those deficiencies.

Retrospective Study of Predictors of Bone Metastasis in Prostate Cancer Cases

  • Ho, Christopher Chee Kong;Seong, Poh Keat;Zainuddin, Zulkifli Md;Abdul Manaf, Mohd Rizal;Parameswaran, Muhilan;Razack, Azad H.A.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3289-3292
    • /
    • 2013
  • Introduction: The purpose of this study was to identify clinical profiles of patients with low risk of having bone metastases, for which bone scanning could be safely eliminated. Materials and Methods: This retrospective cross sectional study looked at prostate cancer patients seen in the Urology Departments in 2 tertiary centres over the 11 year period starting from January 2000 to May 2011. Patient demographic data, levels of PSA at diagnosis, Gleason score for the biopsy core, T-staging as well as the lymph node status were recorded and analysed. Results: 258 men were included. The mean age of those 90 men (34.9%) with bone metastasis was $69.2{\pm}7.3$ years. Logistic regression found that PSA level (P=0.000) at diagnosis and patient's nodal-stage (P=0.02) were the only two independent variables able to predict the probability of bone metastasis among the newly diagnosed prostate cancer patients. Among thowse with a low PSA level less than 20ng/ml, and less than 10ng/ml, bone metastasis were detected in 10.3% (12 out of 117) and 9.7% (7 out of 72), respectively. However, by combining PSA level of 10ng/ml or lower, and nodal negative as the two criteria to predict negative bone scan, a relatively high negative predictive value of 93.8% was obtained. The probability of bone metastasis in prostate cancer can be calculated with this formula: -1.069+0.007(PSA value, ng/ml)+1.021(Nodal status, 0 or 1)=x Probability of bone metastasis=$2.718^x/1+2.718^x$. Conclusion: Newly diagnosed prostate cancer patients with a PSA level of 10ng/ml or lower and negative nodes have a very low risk of bone metastasis (negative predictive value 93.8%) and therefore bone scans may not be necessary.

Multi-unit Level 1 probabilistic safety assessment: Approaches and their application to a six-unit nuclear power plant site

  • Kim, Dong-San;Han, Sang Hoon;Park, Jin Hee;Lim, Ho-Gon;Kim, Jung Han
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1217-1233
    • /
    • 2018
  • Following a surge of interest in multi-unit risk in the last few years, many recent studies have suggested methods for multi-unit probabilistic safety assessment (MUPSA) and addressed several related aspects. Most of the existing studies though focused on two-unit nuclear power plant (NPP) sites or used rather simplified probabilistic safety assessment (PSA) models to demonstrate the proposed approaches. When considering an NPP site with three or more units, some approaches are inapplicable or yield very conservative results. Since the number of such sites is increasing, there is a strong need to develop and validate practical approaches to the related MUPSA. This article provides several detailed approaches that are applicable to multi-unit Level 1 PSA for sites with up to six or more reactor units. To validate the approaches, a multi-unit Level 1 PSA model is developed and the site core damage frequency is estimated for each of four representative multi-unit initiators, as well as for the case of a simultaneous occurrence of independent single-unit initiators in multiple units. For this purpose, an NPP site with six identical OPR-1000 units is considered, with full-scale Level 1 PSA models for a specific OPR-1000 plant used as the base single-unit models.

Safety and Reliability Assessment for Nuclear Power Plants (원자력발전소의 안전성 및 신뢰도 평가)

  • 정원대;황미정
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.143-152
    • /
    • 1997
  • Probabilistic Safety Assessment(PSA) is an engineering analysis of the possible contributors to the risk from a nuclear power plant. It consist of three phases named as Level 1, 2 and 3. Level 1 PSA mainly focused in this paper is the phase of system analysis which includes the development of accident scenarios and the frequency estimation of each scenario. It covers also the system reliability analysis, component data analysis, and human reliability analysis. PSA have become a standard tool in safety evaluation of nuclear power plants. The main benefit of PSA is to provide insights into plant design, performance and environmental impacts, including the identification of dominant risk contributors and the comparison of options for reducing risk.

  • PDF

Utility of Digital Rectal Examination, Serum Prostate Specific Antigen, and Transrectal Ultrasound in the Detection of Prostate Cancer: A Developing Country Perspective

  • Kash, Deep Par;Lal, Murli;Hashmi, Altaf Hussain;Mubarak, Muhammed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3087-3091
    • /
    • 2014
  • Purpose: To determine the utility of digital rectal examination (DRE), serum total prostate specific antigen (tPSA) estimation, and transrectal ultrasound (TRUS) for the detection of prostate cancer (PCa) in men with lower urinary tract symptoms (LUTS). Materials and Methods: All patients with abnormal DRE, TRUS, or serum tPSA >4ng/ml, in any combination, underwent TRUS-guided needle biopsy. Eight cores of prostatic tissue were obtained from different areas of the peripheral prostate and examined histopathologically for the nature of the pathology. Results: PCa was detected in 151 (50.3%) patients, remaining 149 (49.7%) showed benign changes with or without active prostatitis. PCa was detected in 13 (56.5%), 9 (19.1%), 26 (28.3%), and 103 (74.6%) of patients with tPSA <4 ng/ml, 4-10 ng/ml, 10-20 ng/ml and >20 ng/ml respectively. Only 13 patients with PCa had abnormal DRE and TRUS with serum PSA <4 ng/ml. The detection rate was highest in patients with tPSA >20 ng/ml. The association between tPSA level and cancer detection was statistically significant (p<0.01). Among 209 patients with abnormal DRE and raised serum PSA, PCa was detected in 128 (61.2%). Conclusions: The incidence of PCa increases with increasing serum level of tPSA. The overall screening and detection rate can be further improved by using DRE, TRUS and TRUS-guided prostate needle biopsies.