• 제목/요약/키워드: PROCESS ADDITIVES

Search Result 515, Processing Time 0.022 seconds

Characteristics of the Adhesion Layer for the Flexible Organic Light Emitting Diodes (플렉시블 OLED 소자 제작을 위한 접합층 특성 연구)

  • Cheol-Hee Moon
    • Journal of Adhesion and Interface
    • /
    • v.24 no.3
    • /
    • pp.86-94
    • /
    • 2023
  • To fabricate all-solution-processed flexible Organic Light-Emitting Diodes (OLEDs), we demonstrated a bonding technology using a polyethyleneimine (PEI) as an adhesion layer between the two substrates. As the adhesion layer requires not only a high adhesion strength, but also a high current density, we have tried to find out the optimum condition which meets the two requirements at the same time by changing experimental factors such as PEI concentration, thickness of the layer and by mixing some additives into the PEI. The adhesion strength and the electrical current density were investigated by tensile tests and electron only device (EOD) experiments, respectively. The results showed that at higher PEI concentration the adhesion strength showed higher value, but the electrical current through the PEI layer decreased rapidly due to the increased PEI layer thickness. We added Sorbitol and PolyEthyleneGlycohol (PEG) into the 0.1 wt% PEI solution to enhance the adhesion and electrical properties. With the addition of the 0.5 wt% PEG into the 0.1 wt% PEI solution, the device showed an electrical current density of 900 mA/cm2 and a good adhesion characteristic also. These data demonstrated the possibility of fabricating all-solution-processed OLEDs using two-substrate bonding technology with the PEI layer as an adhesion layer.

Investigating the effect of using three pozzolans (including the nanoadditive) in combination on the formation and development of cracks in concretes using non-contact measurement method

  • Grzegorz Ludwik Golewski
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.217-229
    • /
    • 2024
  • This paper presents results of visual analysis of cracks formation and propagation of concretes made of quaternary binders (QBC). A composition of the two most commonly used mineral additives, i.e. fly ash (FA) and silica fume (SF) in combination with nanosilica (nS), has been proposed as a partial replacement of the cement. The principal objective of the present study is to achieve information about the effect of simultaneous incorporation of three pozzolans as partial replacement to the OPC on the fracture processes in concretes made from quaternary binders (QBC). The modern and precise non-contact measurement method (NCMM) via digital image correlation (DIC) technique was used, during the studies. In the course of experiments it was established that the substitution of OPC with three pozzolans including the nanoadditive in FA+SF+nS FA+SF+nS combination causes a clear change of brittleness and behavior during fractures in QBCs. It was found that the shape of cracks in unmodified concrete was quasi-linear. Substitution of the binder by SCMs resulted in a slight heterogeneity of the structure of the QBC, including only SF and nS, and clear heterogeneity for concretes with the FA additive. In addition, as content of FA rises throughout each of QBC series, material becomes more ductile and shows less brittle failure. It means that an increase in the FA content in the concrete mix causes a significant change in fracture process in this composite in comparison to concrete with the addition of silica modifiers only.

Investigation of the impact of multi-strain probiotics containing Saccharomyces cerevisiae on porcine production

  • Sheena Kim;Jinho Cho;Gi Beom Keum;Jinok Kwak;Hyunok Doo;Yejin Choi;Juyoun Kang;Haram Kim;Yeongjae Chae;Eun Sol Kim;Minho Song;Hyeun Bum Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.5
    • /
    • pp.876-890
    • /
    • 2024
  • A balanced intestinal microbiome controls intestinal bacterial diseases, helps regulate immunity, and digests and utilizes nutrients, ultimately having a positive effect on the productivity of industrial animals. Yeasts help in the digestion process by breaking down indigestible fibers and producing organic acids, vitamins, and minerals. In particular, polysaccharides such as beta-glucan and mannan-oligosaccharides, which are present in the cell wall of yeast, inhibit the adhesion of pathogens to the surface of the gastrointestinal tract and increase resistance to disease to help maintain and improve intestinal health. Among the yeast additives used in animal feed, Saccharomyces cerevisiae is one of the most commonly used probiotics. However, it does not naturally reside in the intestine, so if it is supplied in combination with other species of probiotics that can compensate for it, many benefits and synergies can be expected for pigs in terms of maintaining intestinal health such as supplementing the immune system and improving digestion. A number of previous studies have demonstrated that dietary complex probiotic supplementation has growth-promoting effects in pigs, suggesting that multiple strains of probiotics may be more effective than single strain probiotics due to their additive and synergistic effects. In practice, however, the effects of complex probiotics are not always consistent, and can be influenced by a variety of factors. Therefore, this review comprehensively examines and discusses the literature related to the effects of complex probiotics using Saccharomyces cerevisiae in pig production.

Removal of Volatile Oganic Compounds from Spent Polypropylene by High-temperature Supercritical Carbon Dioxide Extraction

  • Sabrinna Wulandari;Jongho Choi;Aye Aye Myint;DaeSung Jung;Jaehoon Kim
    • Clean Technology
    • /
    • v.30 no.3
    • /
    • pp.239-247
    • /
    • 2024
  • The removal of volatile organic compounds (VOCs) from spent polypropylene (PP) sourced from the bumpers and interiors of used cars was carried out by using high-temperature supercritical carbon dioxide (scCO2) extraction. The recycled polymers from the bumpers and interiors contained other additives beside PP such as polyethylene (PE), talc, and carbon black, which modified the properties of PP. The crystallinity of the recycled bumper and interior PP was significantly lower than that of the virgin PP pellet. The decomposition temperatures of the recycled bumper and interior PP was slightly higher than that of the virgin PP pellet, while the melting and crystallization points were slightly lower. The effect of process conditions on VOC removal was studied by varying the time (2 ~ 720 min), pressure (6.4 ~ 14 MPa), and temperature (298 ~ 473 K). Since VOC removal at 2 min produced satisfying results, times below 2 min (10 ~ 120 s) were also studied. The main goal of scCO2 extraction was to reduce the xylene content, as the xylene content of the recycled bumpers was higher than the allowable limit. A temperature above 373 K was needed to remove the xylene from the waste PP samples. The optimum condition for VOC removal from bumper waste was determined to be 433 K, 8 MPa, and 60 s. The car interior waste had VOC content within the allowable limit, so no further treatment was needed.

Simulation-Based Design of Shear Mixer for Improving Mixing Performance (혼합효율 개선을 위한 Shear Mixer의 시뮬레이션 기반 형상 설계)

  • Kim, Tae-Young;Jeon, Gyu-Mok;Ock, Dae-Kyung;Park, Jong-Chun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.2
    • /
    • pp.107-116
    • /
    • 2017
  • When drilling operation is being performed, many physical and chemical changes are occurred near wellbore. To handle various changes of well condition and keep drilling process safe, additives of bulk, such as bentonite for increasing density of drilling mud, barite for increasing viscosity of drilling mud, polymer for chemical control, or surfactant, are added into drilling mud through a mud shear mixer. Because the achievement of the required material property through mud mixing system is essential to stabilize drilling system, it is of importance to analyze multi-phase flow during mud mixing process, which is directly related to increase mixing performance of the system and guarantee the safety of the whole drilling system. In this study, a series of liquid-solid flow simulation based on a computational fluid dynamics (CFD) are performed with comparing to solid concentration in experiment by Gilles et al. [2004] to understand the characteristics of liquid-solid mixing in a mud shear mixer. And then, the simulation-based design of shear mixer are carried out to improve mixing performance in a mud handling system.

Structure-Property Relationship of PVA-SbQ Water Soluble Photosensitive Polymer and its Application to Screening Process of Color Monitor (PVA-SbQ 수용성 감광성 고분자의 구조와 감도관계 및 칼라 수상관 스크린 공정에의 응용)

  • Park, Lee Soon;Han, Yoon Soo;Kim, Bong Chul
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.379-386
    • /
    • 1996
  • Photosensitive compound, 1-methyl-4-[2-(4-diethylacetylphenyl)ethenyl] pridinium methosulfate(SbQ-A salt), was synthesized from dimethyl sulfate, terephthalaldehyde mono-(diethylacetal) and 4-picoline. SbQ-A salts were reacted with poly(vinyl alcohol)s, (PVA) in aqueous solution with phosphoric acid as catalyst to give photosensitive PVA-SbQ with different SbQ content and molecular weight. Relative photosensitivity of PVA-SbQ was determined by gray scale(GS) method. The rotative sensitivity of PVA-SbQ increased with increasing amount of bound SbQ in the case of high molecular weight(MW=77,000-79,000g/mol) as substrate and decreased with decreasing molecular weight of PVA with about constant(1.3mol%) amount of bound SbQ. The most sensitive polymer was obtained when SbQ group content in PVA-SbQ reached about 2.63mol% in the case of high molecular weight(77,000-79,000g/mol) PVA. This sample showed 90 times greater sensitivity than dichromated PVA as reference photosensitive system. PVA-SbQ photosensitive polymer synthesized was applied to the photolithographic screening process of phosphor on the panel of cathode ray tube(CRT). Phosphor slurry was made with PVA-SbQ, phosphor, a small amount of surfactant and other additives using water as medium. The slurry was coated onto panel, dried by heater, exposed to UV light and then developed by distilled water. When a small amount of cationic surfactant such as cetyltrimethylammonium chloride was used in the slurry formulation, the sharpness of phosphor pattern was equal to or better than that of dichromated PVA photosensitive polymer system used currently.

  • PDF

Removal of Impurities from Waste Carbon Sludge for the Recycling (폐 카본슬러지의 재활용을 위한 不純物 분리 제거)

  • 이성오;국남표;오치정;김선태;신방섭
    • Resources Recycling
    • /
    • v.10 no.3
    • /
    • pp.51-59
    • /
    • 2001
  • Impurities removal from waste carbon black was carried out to produce high-grade carbon black. A large amount of hydrophilic carbon black is produced as a byproduct of the hydrogen production process by flame decomposition of water. Due to its impurities content such as sulphur, iron, ash, etc., it can only be used as low-grade carbon or burnt out. High-grade hydrophilic carbon black is 3~5 times more expensive than oil-based carbon black because of high production cost associated with process complexly and pollutant treatment. Hydrophilic carbon is normally used for conductive materials for batteries, pigment for plastics, electric wire covering, additives for rubber, etc. In these applications, impurity content must be blow 1 fe. In this study, magnetic separation, froth flotation and ultrasonic treatment were employed to remove impurities from the low-grade hydrophilic carbon black. Results showed that the ash, iron and sulphur content of product decreased to less than 0.01 wt.%, 0.01 wt.% and 0.3 wt % respectively and the surface area of product was about 930 $m^2$/g for conductive materials.

  • PDF

Physical Properties and Cleaning Ability of Fluoride-Type Cleaning Agents Alternative to Ozone Destruction Substances (오존파괴물질 대체 불소계 세정제의 물성 및 세정성 평가연구)

  • Park, Ji Na;Kim, Eun Jung;Jung, Young Woo;Kim, Honggon;Bae, Jae Heum
    • Clean Technology
    • /
    • v.11 no.3
    • /
    • pp.129-139
    • /
    • 2005
  • Fluoride-type cleaning agents such as TFEA (2,2,2-trifluoroethanol) and HFE (hydrofluoroether) are noticed to be next generation cleaning agents alternative to CFCs since they do not destruct ozones in the stratosphere due to no containment of chloride in the molecule, have lower global warming potential compared to HFCs and HCFCs, and are thermally stable compounds. Thus, the physical properties and cleaning agents were measured and compared with those of CFC-113, 1,1,1-TCE and HCFC-141b which are ozone destruction substances. They were also compared and evaluated with those of IPA and methanol which are currently employing as alternative cleaning agents. And TFEA-based cleaning agents consisted of TFEA and alcohols or HFEs were formulated, their physical properties and cleaning abilities were measured and their utilization as alternative cleaning agents was evaluated. As a result, TFEA and HFEs have lower cleaning ability for their removal of various soils compared to chloride-type cleaning agents, but theyshow excellent cleaning ability for Fluoride-type soils. And it is observed that the formulated cleaning agents of TFEA and alcohols or HFEs caused to increase cleaning ability of flux and unsoluble cutting oil more than 100% compared to their individual component. Therefore, the fluoride-type cleaning agents are expected to be utilized for development of environmental-friendly non aqueous cleaning agents with excellent cleaning ability if they are formulated with proper solvents or additives.

  • PDF

Effect of Zn/NaCl ratios on the charge/discharge performance in Na-ZnCl2 battery (Na-ZnCl2 전지에서 Zn/NaCl 비율이 충방전 특성에 미치는 영향)

  • Kim, Heon-Tae;Kim, Seong-In;Choi, Hee-Lack;Park, Won-Il;Kim, Chang-Sam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.2
    • /
    • pp.74-79
    • /
    • 2015
  • $Na-ZnCl_2$ battery, which operates as the same mechanism of $Na-NiCl_2$ battery using solid-electrolyte, is able to reduce its material cost by 40 % comparing to the $Na-NiCl_2$ battery. It has been known that the $Na-ZnCl_2$ battery produces $Na_2ZnCl_4$ as an intermediate phase during charge/discharge process. Therefore, the redox process is divided into four steps having the voltage range of 1.92~2.13 V. However, effects of the critical factors such as the composition of cathode materials, depth of charge and discharge, and additives have not been reported yet. We examined the effect of the Zn/NaCl ratios and revealed that its optimum ratio was in the range of 1.3~1.7.

Extraction Equilibria of Succinic Acid by Using Aqueous Two Phases System Containing Imidazolium Ionic Liquids and Salts (이미다졸계 이온성액체와 염을 포함한 수상이성분계를 이용한 숙신산의 추출 평형)

  • Lee, Yong Hwa;Kang, Jeong Won;Hong, Yeon Ki;Kim, Ki-Sub
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.349-353
    • /
    • 2014
  • Succinic acid is an important precursor in industries producing biopolymers, pharmaceutical and food additives and green solvents. However, due to the high price of petroleum and the global $CO_2$ emission, the biological production of succinic acid from renewable biomass is a novel process due to the fixation of $CO_2$ into succinate during fermentation. In this study, aqueous two phase systems based on imidazolium ionic liquids/$K_2HPO_4$ were used as an effective separation and concentration process for succinic acid. Experimental results show that aqueous two phase systems can be formed by adding appropriate amount of imidazolium ionic liquids to aqueous $K_2HPO_4$ solutions in the presence of succinic acid. It can be found that the ability of imidazolium ionic liquids for phase separation followed the order [HMIm][Br]${\fallingdotseq}$[OMIm][Br]>[BMIm][Br]>[EMIm][Br]. The maximum value of extraction efficiency for succinic acid was about 90% and the amount of coextracted water into top phase is proportional to the chain length of cation in imidazolium ionic liquids. It was concluded that the aqueous two phase systems composed of imidazolium ionic liquids/$K_2HPO_4$ was effective for the selective extraction and concentration of succinic acid.