The purpose of this study is to provide the fundamental data of a dummy design for more suitable ready made clothing by making a pattern of somatic types and analyzing their morphological characteristics in accordance with different pattern of somatic types. The side view silhouettes of 90 junior high school girls of age $13\~16$ in seoul urban area were measured by means of the plan photographing and the low data were examined by principal component analysis, while the principal component analysis was applied and three components were extracted and then interpreted to explain to variation of the form of the body. Using three components respectively the cluster analysis was carried out and the subject classified into 4 cluster The following outcomes are obtained. . The results of principal component analysis of this study would be turned out the three; 1) The first principal component shows the degree of erectness or stoop of the figure. 2) The second principal component was a stature length or a growth rate. 3) The third principal component was the obesity component. 2. The results of cluster analysis by using three principal component analysis would be turned out the four cluser; 1) Cluster 1 ($29\%$ of the total) is characterized with lower stature. 2) Cluster 2 ($21\%$ of the total) is characterized with backward somatotype, and the highest leg. 3) Cluster 3 ($23\%$ of the total) is thicked back of neck. 4) Cluster 4 ($27\%$ of the total) is characterized with forward somatotype, and highest stature, height.
Performance of panelists trained for cooked rice quality was evaluated using analysis of variance, correlation analysis, and principal component analysis. Each method offered different information. Results showed that panleists with high F ratios (p=0.05) did not always have high correlation coefficient (p=0.05) with mean values pooled from whole panel. The results of analysis of variance for the panelists whose performance were extremely good or extremely poor were consistent with those of correlation analysis. Outliers designated by principal component analysis were different from the panelists whose performance was defined as extremely good or extremely poor by analysis of variance and correlation analysis. The results of principal component analysis descriminated the panelists with different scoring range more than different scoring trends depending on the treatments. Our study suggested combination of analysis of variance and correlation analysis provided valid basis for screening panelists.
주성분 분석(principal component analysis; PCA)은 서로 상관되어 있는 다변량 자료의 차원을 축소하는 대표적인 기법으로 많은 다변량 분석에서 활용되고 있다. 하지만 주성분은 모든 변수들의 선형결합으로 이루어지므로, 그 결과의 해석이 어렵다는 한계가 있다. sparse PCA(SPCA) 방법은 elastic net 형태의 벌점함수를 이용하여 보다 성긴(sparse) 적재를 가진 수정된 주성분을 만들어주지만, 변수들의 그룹구조를 이용하지 못한다는 한계가 있다. 이에 본 연구에서는 기존 SPCA를 개선하여, 자료가 그룹화되어 있는 경우에 유의한 그룹을 선택함과 동시에 그룹 내 불필요한 변수를 제거할 수 있는 새로운 주성분 분석 방법을 제시하고자 한다. 그룹과 그룹 내 변수 구조를 모형 적합에 이용하기 위하여, sparse 주성분 분석에서의 elastic net 벌점함수 대신에 계층적 벌점함수 형태를 고려하였다. 또한 실제 자료의 분석을 통해 제안 방법의 성능 및 유용성을 입증하였다.
Principal component analysis based two-dimensional (PCA-2D) correlation analysis is applied to FTIR spectra of polystyrene/methyl ethyl ketone/toluene solution mixture during the solvent evaporation. Substantial amount of artificial noise were added to the experimental data to demonstrate the practical noise-suppressing benefit of PCA-2D technique. 2D correlation analysis of the reconstructed data matrix from PCA loading vectors and scores successfully extracted only the most important features of synchronicity and asynchronicity without interference from noise or insignificant minor components. 2D correlation spectra constructed with only one principal component yield strictly synchronous response with no discernible a asynchronous features, while those involving at least two or more principal components generated meaningful asynchronous 2D correlation spectra. Deliberate manipulation of the rank of the reconstructed data matrix, by choosing the appropriate number and type of PCs, yields potentially more refined 2D correlation spectra.
상관관계 전력 분석(Correlation Power Analysis, CPA)은 암호장비에서 알고리즘이 수행될 때 누설되는 전력 소비 신호와 알고리즘의 중간 계산 값의 상관도를 이용하여 비밀키를 추출하는 부채널 공격 방법이다. CPA는 누설된 전력 소비의 시간적인 동기 또는 잡음에 의해 공격 성능이 영향을 받는다. 최근 전력 분석의 성능 향상을 위해 다양한 신호 처리 기술이 연구되어지고 있으며, 그 중 주성분 분석 기반의 신호 압축 기술이 제안되었다. 주성분 분석 기반의 신호 압축은 주성분 선택 방법에 따라 분석 성능에 영향을 주기 때문에 주성분 선택은 중요한 문제이다. 본 논문에서는 CPA의 성능 향상을 위해 전력 소비와의 상관도가 높은 주성분을 선택하는 주성분 선택 기법을 제안한다. 또한 각 주성분이 갖는 특징이 다르다는 점을 이용한 주성분 기반 CPA 분석 기법을 제안하고, 기존 방법과 제안하는 방법의 실험적인 분석을 통해 공격 성능이 향상됨을 보인다.
본 연구에서는 시뮬레이션 방법을 사용해서 다양한 조건에서 주성분분석이 얼마나 잘 요인 구조를 복원할 수 있는지를 공통요인분석과 비교하여 체계적으로 평가하였다. 이 연구에서 요인 대 변수 비율, 공통성, 그리고 표본크기를 실험변수로 설정하였다. 주성분분석은 표본의 크기가 200개 이하인 경우 공통적으로 공통요인분석에 비해 더 우수한 요인구조의 복원력을 보여주었다. 특히, 요인 당 변수 수가 적은 경우, 주성분분석은 50개의 표본에서도 만족할 만한 수준의 요인복원능력을 보여주었다. 이와 더불어 공통성 수준 또한 낮은 경우 필요한 표본수는 100개로 늘어난다. 본 연구결과는 요인추출방법으로서 주성분분석의 선택의 근거를 제시하고 타당한 사용에 관한 가이드라인을 제시해 준다.
The purpose of this study was to evaluate climate change vulnerability over the agricultural infrastructure in terms of flood and drought using principal component analysis. Vulnerability was assessed using vulnerability resilience index (VRI) which combines climate exposure, sensitivity, and adaptive capacity. Ten flood proxy variables and six drought proxy variables for the vulnerability assessment were selected by opinions of researchers and experts. The statistical data on 16 proxy variables for the local governments (Si, Do) were collected. To identify major variables and to explain the trend in whole data set, principal component analysis (PCA) was conducted. The result of PCA showed that the first 3 principal components explained approximately 83 % and 89 % of the total variance for the flood and drought, respectively. VRI assessment for the local governments based on the PCA results indicated that provinces where having the relatively large cultivation areas were categorized as vulnerable to climate change.
Environmental monitoring system has been adopted and supplemented as inspection measures for the quantitative and qualitative changes of environmental impact assessment (EIA). This study compares the results of environmental impact assessment with the results of post-environmental investigation using a correction and principal component analysis (PCA) in the housing development project. Correlation analysis showed that most of air quality variables including TSP, $PM_{10},\;NO_2$, CO were linearly correlated with each other in the environmental impact assessment and the post-environmental investigation. In the water quality, pH and BOD were well correlated with the DO and SS, respectively. As a result of correlation analysis in the noise and vibration, noise in day and night and vibration in day and night were related to each other between EIA and the post-environmental investigation. From the results of analysis of soil, Cu with Cd, Cu with Pb, and Cd with Pb were related to each other in EIA. Principal component analysis (PCA) showed a powerful pattern recognition that had attempted to explain the variance of a large dataset of inter-correlated variable with a smaller set of independent variables (principal components). Principal component (PC1) and principal component (PC2) were obtained with eigenvalues> 1 summing almost $90\%$ of the total variance in the all of the items(air, water, noise, vibration and soil) in EIA and post-environmental investigation.
Communications for Statistical Applications and Methods
/
제4권3호
/
pp.637-644
/
1997
Sometimes, the first principal component may come logically from the established knowledge and premises. For example, for the high school students' test scores of Korean, English, Mathematics, Social Study, and Science, it is natural to define the first principal component as the average of all subject scores. In such cases, we need to respect both the background knowledge and the data exploration. The aim of this study is to find the remaining components in principal component analysis of multivariate data when the first principal component is defined a priori by the researcher. Moreover, we study related matrix decomposition and their application to the graphical display.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.