• Title/Summary/Keyword: PREVENT THE INFLOW

Search Result 120, Processing Time 0.025 seconds

An Experimental Study on Characteristics of Pressure Drop of Screens Used in Horticultural Facilities (원예시설용 망의 압력강하 특성에 대한 실험적 연구)

  • Yum, Sung Hyun;Kang, Seung-Hee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.31-35
    • /
    • 2013
  • This study was carried out to present the pressure drop for various wind speeds through nine types of screens used in horticultural facilities. The screens have been widely used to prevent harmful insects from being entered into agricultural facilities, to reduce strong wind and to shade a light as well. Whatever the usage of the screens was, it was necessary to have good knowledge of how much the screen caused a pressure drop for wind speeds when analyzing both the inner thermal-flow distribution in the facility and the effect of reducing wind speed by using CFD. Furthermore, as for wind screens, the pressure drop for wind speeds was needed as a design load in evaluating the structural stability of the structures supporting the screens. Therefore, the pressure drop through the screens for wind speeds of 5~30 $m{\cdot}s^{-1}$ at about 5 $m{\cdot}s^{-1}$ interval and inflow angles of $0{\sim}45^{\circ}$ at an interval of $15^{\circ}$ was respectively measured in a subsonic wind tunnel. The relation of the pressure drop for various screens was well fitted as a secondorder polynomial expression.

A Study on the Malfunction Prevention for Transponder of Record Type Fire Alarm System (R형 자탐설비의 중계기 오동작 방지 대책에 대한 연구)

  • Yoo, Jae Ick;Jung, Jae Hee
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.5
    • /
    • pp.54-59
    • /
    • 2014
  • The record type receivers that are operated in large industrial sites have strength in preventing fire. However, because of its long circuit lines and multiple detectors, the receivers are vulnerable to lightning, noise, and breakdown of equipments, resulting in malfunction. In case of malfunctioning of detection circuits of main protection areas, such as electrical room and server room, potential release of gaseous extinguisher agents may lead to property and life damage. In this paper, we present the results on the characteristics of the transponder that initiates the solenoid valves, with respect to various electromagnetic and lightning inflow conditions. Based on the measured data, we analyzed the systematic problems of the transponder. In order to prevent receiver malfunctions, a sequential circuit was configured with two additional transponders and a timer. The circuit was tested with a simulator with preference and delay circuit algorithms.

Hydrologic Safety Evaluation of Small Scale Reservoir by Simplified Assesment Method (간편법에 의한 소규모저수지의 수문학적 안전성 평가)

  • Lee, Joo-Heon;Yang, Seung-Man;Kim, Seong-Joon;Kang, Boo-Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.2
    • /
    • pp.9-17
    • /
    • 2011
  • Based on the statistical annual report, there are 17,649 reservoirs are operating for the purpose of agricultural water supply in Korea. 58 % of entire agricultural reservoirs had been constructed before 1948 which indicate the termination of required service life and rest of those reservoirs have also exposed to the dam break risk by extreme flood event caused by current ongoing climate change. To prevent damages from dam failure accident of these risky small size dams, it is necessary to evaluate and manage the structural and hydrological safety of the reservoirs. In this study, a simplified evaluation method for hydrologic safety of dam is suggested by using Rational and Creager formula. Hydrologic safety of small scale dams has evaluated by calculating flood discharge capacity of the spillway and compares the results with design frequency of each reservoir. Applicability and stability of suggested simplified method have examined and reviewd by comparing the results from rainfall-runoff modeling with dam break simulation using HEC-HMS. Application results of developed methodology for three sample reservoirs show that simplified assessment method tends to calculate greater inflow to the reservoirs then HEC-HMS model which lead lowered hydrologic safety of reservoirs. Based on the results of application, it is expected that the developed methodology can be adapted as useful tool for small scale reservoir's hydrologic safety evaluation.

Efficiency Improvement of Metal-Mesh Electrode Type Photoelectrochemical Cells by Oxides Layer Coatings (산화물박막 증착에 의한 금속 메쉬전극 구조 광전기화학셀의 효율 개선에 관한 연구)

  • Han, Chi-Hwan;Park, Seon-Hee;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.584-587
    • /
    • 2011
  • In this work, the $TiO_2$ and $SnO_2$ thin films as blocking layers were coated directly onto the metal-mesh electrode surface to prevent unnecessary inflow of back-transfer electrons from the electrolyte ($I^-/I_3^-$) to the metal-mesh electrode. The DSCs were fabricated with working electrode of SUS mesh coated with blocking $TiO_2$ and $SnO_2$ layers, dye-attached mesoporous $TiO_2$ film, gel electrolyte and counter electrode of Pt-deposited F:$SnO_2$. From the experimental result, it was ascertained that the efficiency of metal electrode coated with $TiO_2$ by Dip-coating was superior to that of metal electrode coated with $SnO_2$ by Dip-coating and screen printing with the results of experiments. The photo-current conversion efficiency of the cell obtained from optimum fabrication condition was 3% ($V_{oc}$=0.61V, $J_{sc}$=11.64 mA/$cm^2$, ff=0.64) under AM1.5, 100 mW/$cm^2$ illumination.

A Study on the Effect of Inlet Boundary Condition on Flow Characteristics of a Supersonic Turbine

  • Shin, Bong-Gun;Kim, Kui-Soon;Kim, Jin-Han
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • The inlet boundary condition of computations about the supersonic turbine flow is commonly applied as far-field inlet boundary condition with specified velocity. However, the inflow condition of supersonic turbine is sometimes affected by the shocks or expansion waves propagated from leading edges of blade. These shocks and expansion waves alter the inlet boundary condition. In this case, the inlet boundary condition can not be specified Therefore, in this paper, numerical analyses for three different inlet conditions - fa-field inlet boundary condition, inlet boundary condition with a linear nozzle and inlet boundary condition with a converging-diverging nozzle - have been performed and compared with experimental results to solve the problem. It is found that the inlet condition with a linear nozzle or a converging-diverging nozzle can prevent changing of inlet boundary condition, and thus predict more accurately the supersonic flow within turbine cascade than a far-field inlet boundary condition does.

The Development of Corrosion Standard System of Water and Wastewater in Soil Environment (상·하수도 배관재의 토양환경에서의 부식표준시스템 개발)

  • Park, Kyeong-Dong;Shin, Yeong-Jin;Lee, Ju-Yeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.7-12
    • /
    • 2006
  • Galvanized steel pipe, copper pipe and stainless steel pipe, which is being used in waterworks piping materials. In case of galvanized steel pipe, the precipitation of a product is being generated due to the pollution of the tap water, a white water phenomenon, and various corrosion reaction because a zinc ion is melted by tap water. And in case of a cupper pipe, many problems which is harm in sanitation appeared because of a inflow of harmfulness substance by a frequent accident of a water leakage. So, to prevent these problems, it is substituted for stainless steel pipe. However, those problems is still occurring because of badness of welding, a problem of a water leakage in connection part, and a increment of construction expenses. Therefore, this research has examined the laying period according to each piping thickness and a corrosion shape according to each laying depth after laying in various soils(sandy loam, loamy, clay loam, clay) using galvanized steel pipe, copper pipe, and stainless steel pipe. That is, we has studied the data which is necessary for a rational method of preserving the quality of water by examining the corrosion properties of piping materials in the soil environment which waterworks piping materials is being used.

  • PDF

Development of Guidelines for Animal Waste Land Application to Minimize Water Quality Impacts (축산분뇨 농지환원을 위한 적정관리방안)

  • 홍성구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.136-146
    • /
    • 2002
  • Land application of manure compost is considered one of the widely-used animal waste management practices. Many livestock farms adopt composting for their animal waste disposal and apply the compost to crop fields. While standard rates have been established based on researches with respect to land application of manure compost recently, there have been few discussions on water quality impact of the application. Water quality impact should be taken into account in land applications of manure compost. In this study, management practices were proposed based on the investigation of water quality of leachate from manure compost under rainfall simulation, field studies, and monitoring runoff water quality from farm fields after land application of animal waste. The concentrations of major water quality parameters of the leachate were significantly high, whereas those of runoff from soils after tillage for soil incorporation, were not affected by the application based on a series of experiments. Runoff water from farm fields after land application also showed high concentrations of pollutants. Appropriate management practices should be employed to minimize pollutant loading from manure applied fields. Proposed major management practices include 1) application of recommended amounts, 2) proper tillage for complete soil and manure incorporation, 3) field management to prevent excessive soil erosion, 4) complete diversion of inflow into the field from outside, 5) implementation of vegetative buffer strips near boundaries, and 6) prevention of direct discharge of runoff water front fields Into streams.

Investigation and Complementary Measures Establishment for Flood on Tidal Reclaimed Paddy Fields (간척지 논 침수 원인 조사와 방재 대책 수립)

  • Jeong, Ju-Hong;Yoon, Kwang-Sik;Choi, Soo-Myung;Yoon,, Suk-Gun;Go, Young-Bae;Kim, Young-Taek
    • KCID journal
    • /
    • v.17 no.2
    • /
    • pp.105-114
    • /
    • 2010
  • Tidal land reclamation provided water resources and land for agriculture and contributed stable crop production. However, climate change by global warming disrupts the hydrologic circulatory system of the earth resulting in sea level rise and more frequent flood for reclaimed arable land. Recently, Suyu reclaimed paddy field in Jindo-gun experienced prolonged inundation after heavy rainfall and there is a growing risk of flood damage. Onsite survey and flood analysis using GATE_Pro model of Korea Rural Corporation were conducted to investigate causes of flooding. To perform the analysis, input data such as inflow hydrograph, the lowest elevation of paddy field, neap tide level, management level of Gunnae estuary lake at the time of the flood were collected. Flood analysis confirmed that current drainage facilities are not enough to prevent 20year return period flood. The result of analysis showed flooding more than 24hours. Therefore, flood mitigation alternatives such as sluice gate expansion, installation drainage pumping station, refill paddy land, and catch canal were studied. Replacing drainage culvert of Suyu dike to sluice gate and installing drainage pumping station at the Gunne lake were identified as an effective flood control measures. Furthermore, TM/TC (SCADA) system and expert for gate management are required for the better management of drainage for estuary dam and flood mitigation.

  • PDF

Using Ambient Control to Prevent External Disturbances in Large-scale Furnace (대형 용해로의 외부 환경변수를 통제하기 위한 주변 환경관리의 활용)

  • Cho, Jin-Hyung;Chang, Sung-Ho;Lee, Sae-Jae;Jang, Do-Soo;Suh, Jung-Yul;Oh, Hyun-Seung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.2
    • /
    • pp.92-96
    • /
    • 2006
  • Large glass furnaces to produce glass for CRT are housed in huge chambers. It is costly to maintain such a chamber in constant temperature, humidity, and(air) pressure. In this study, first, we show that the process of such a huge furnace, which requires the steady maintenance of high temperature, is badly affected by the ambient temperature of surrounding air. Second, an alternative process which not only maintains the relatively constant temperature dispersion around the furnace, but is also economical will be proposed. We calculate the necessary volume of air inflow in the appendix.

Corrosion Protective Method Applicable to Air Vent Connected with a Heat Transport Pipe (열수송관에 연결된 에어벤트에 적용 가능한 부식 방지 방안)

  • Min Ji Song;Gahyun Choi;Woo Cheol Kim;Soo Yeol Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.115-122
    • /
    • 2023
  • This study aimed to elucidate causes of corrosion of heat transport pipes and air vents installed under a manhole of heat transport facilities and suggest effective anticorrosive measures by applying paints or adhesive tapes. It was found that air vent corrosion was attributed to corrosion under insulation caused by the inflow of water and the enrichment of chloride ions. The infiltrated water caused a hydrolysis of polyurethane foam (PUF) insulation by concentrating chloride ions at the interface between a pipe and the PUF. As insulator deteriorated, more chloride ions were eluted as confirmed by ion chromatograph (IC) analysis. As an effective method to prevent air vent corrosion, different types of paints and adhesive tapes with higher corrosion resistance on chloride ions were applied and environmental resistance tests were performed with those samples. Based on environmental test results of samples exposed to 10% HCl solution, it was revealed that a wax tape was the most adequate from a viewpoint of stability at operating condition, environmental resistance, surface treatment, and field applicability.