• Title/Summary/Keyword: PRETREATMENT

Search Result 4,302, Processing Time 0.029 seconds

The Application of 3D Bolus with Neck in the Treatment of Hypopharynx Cancer in VMAT (Hypopharynx Cancer의 VMAT 치료 시 Neck 3D Bolus 적용에 대한 유용성 평가)

  • An, Ye Chan;Kim, Jin Man;Kim, Chan Yang;Kim, Jong Sik;Park, Yong Chul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.41-52
    • /
    • 2020
  • Purpose: To find out the dosimetric usefulness, setup reproducibility and efficiency of applying 3D Bolus by comparing two treatment plans in which Commercial Bolus and 3D Bolus produced by 3D Printing Technology were applied to the neck during VMAT treatment of Hypopahrynx Cancer to evaluate the clinical applicability. Materials and Methods: Based on the CT image of the RANDO phantom to which CB was applied, 3D Bolus were fabricated in the same form. 3D Bolus was printed with a polyurethane acrylate resin with a density of 1.2g/㎤ through the SLA technique using OMG SLA 660 Printer and MaterializeMagics software. Based on two CT images using CB and 3D Bolus, a treatment plan was established assuming VMAT treatment of Hypopharynx Cancer. CBCT images were obtained for each of the two established treatment plans 18 times, and the treatment efficiency was evaluated by measuring the setup time each time. Based on the obtained CBCT image, the adaptive plan was performed through Pinnacle, a computerized treatment planning system, to evaluate target, normal organ dose evaluation, and changes in bolus volume. Results: The setup time for each treatment plan was reduced by an average of 28 sec in the 3D Bolus treatment plan compared to the CB treatment plan. The Bolus Volume change during the pretreatment period was 86.1±2.70㎤ in 83.9㎤ of CB Initial Plan and 99.8±0.46㎤ in 92.2㎤ of 3D Bolus Initial Plan. The change in CTV Min Value was 167.4±19.38cGy in CB Initial Plan 191.6cGy and 149.5±18.27cGy in 3D Bolus Initial Plan 167.3cGy. The change in CTV Mean Value was 228.3±0.38cGy in CB Initial Plan 227.1cGy and 227.7±0.30cGy in 3D Bolus Initial Plan 225.9cGy. The change in PTV Min Value was 74.9±19.47cGy in CB Initial Plan 128.5cGy and 83.2±12.92cGy in 3D Bolus Initial Plan 139.9cGy. The change in PTV Mean Value was 226.2±0.83cGy in CB Initial Plan 225.4cGy and 225.8±0.33cGy in 3D Bolus Initial Plan 224.1cGy. The maximum value for the normal organ spinal cord was the same as 135.6cGy on average each time. Conclusion: From the experimental results of this paper, it was found that the application of 3D Bolus to the irregular body surface is more dosimetrically useful than the application of Commercial Bolus, and the setup reproducibility and efficiency are excellent. If further case studies along with research on the diversity of 3D printing materials are conducted in the future, the application of 3D Bolus in the field of radiation therapy is expected to proceed more actively.

The Results of Definitive Radiation Therapy and The Analysis of Prognostic Factors for Non-Small Cell Lung Cancer (비소세포성 폐암에서 근치적 방사선치료 성적과 예후인자 분석)

  • Chang, Seung-Hee;Lee, Kyung-Ja;Lee, Soon-Nam
    • Radiation Oncology Journal
    • /
    • v.16 no.4
    • /
    • pp.409-423
    • /
    • 1998
  • Purpose : This retrospective study was tried to evaluate the clinical characteristics of patients, patterns of failure, survival rates, prognostic factors affecting survival, and treatment related toxicities when non-small cell lung cancer patients was treated by definitive radiotherapy alone or combined with chemotherapy. Materials and Methods : We evaluated the treatment results of 70 patients who were treated by definitive radiation therapy for non-small cell lung cancer at the Department of Radiation Oncology, Ewha Womans University Hospital, between March 1982 and April 1996. The number of patients of each stage was 2 in stage I, 6 in stage II, 30 in stage III-A, 29 in stage III-B, 3 in stage IV. Radiation therapy was administered by 6 MV linear accelerator and daily dose was 1.8-2.0 Gy and total radiation dose was ranged from 50.4 Gy to 72.0 Gy with median dose 59.4 Gy. Thirty four patients was treated with combined therapy with neoadjuvant or concurrent chemotherapy and radiotherapy, and most of them were administered with the multi-drug combined chemotherapy including etoposide and cisplatin. The survival rate was calculated with the Kaplan-Meier methods. Results : The overall 1-year, 2-year, and 3-year survival rates were 63$\%$, 29$\%$, and 26$\%$, respectively. The median survival time of all patients was 17 months. The disease-free survival rate for 1-year and 2-year were 23$\%$ and 16$\%$, respectively. The overall 1-year survival rates according to the stage was 100$\%$ for stage I, 80$\%$ for stage II, 61$\%$ for stage III, and 50$\%$ for stage IV. The overall 1-year 2-year, and 3-year survival rates for stage III patients only were 61$\%$, 23$\%$, and 20$\%$, respectively. The median survival time of stage III patients only was 15 months. The complete response rates by radiation therapy was 10$\%$ and partial response rate was 50$\%$. Thirty patients (43$\%$) among 70 patients assessed local control at initial 3 months follow-up duration. Twenty four (80$\%$) of these 30 Patients was possible to evaluate the pattern of failure after achievement of local control. And then, treatment failure occured in 14 patients (58$\%$): local relapse in 6 patients (43$\%$), distant metastasis in 6 patients (43$\%$) and local relapse with distant metastasis in 2 patients (14$\%$). Therefore, 10 patients (23$\%$) were controlled of disease of primary site with or without distant metastases. Twenty three patients (46$\%$) among 50 patients who were possible to follow-up had distant metastasis. The overall 1-year survival rate according to the treatment modalities was 59$\%$ in radiotherapy alone and 66$\%$ in chemoirradiation group. The overall 1-year survival rates for stage III patients only was 51$\%$ in radiotherapy alone and 68$\%$ in chemoirradiation group which was significant different. The significant prognostic factors affecting survival rate were the stage and the achievement of local control for all patients at univariate- analysis. Use of neoadjuvant or concurrent chemotherapy, use of chemotherapy and the achievement of local control for stage III patients only were also prognostic factors. The stage, pretreatment performance status, use of neoadjuvant or concurrent chemotherapy, total radiation dose and the achievement of local control were significant at multivariate analysis. The treatment-related toxicities were esophagitis, radiation pneunonitis, hematologic toxicity and dermatitis, which were spontaneously improved, but 2 patients were died with radiation pneumonitis. Conclusion : The conventional radiation therapy was not sufficient therapy for achievement of long-term survival in locally advanced non-small cell lung cancer. Therefore, aggressive treatment including the addition of appropriate chemotherapeutic drug to decrease distant metastasis and preoperative radiotherapy combined with surgery, hyperfractionation radiotherapy or 3-D conformal radiation therapy for increase local control are needed.

  • PDF