• Title/Summary/Keyword: PRETREATMENT

Search Result 4,302, Processing Time 0.037 seconds

Quantitative Elemental Analysis in Soils by using Laser Induced Breakdown Spectroscopy(LIBS) (레이저유도붕괴분광법을 활용한 토양의 정량분석)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Lee, Jeong-Tae;Hwang, Seon-Woong;Jin, Yong-Ik;Park, Chan-Won;Moon, Yong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.399-407
    • /
    • 2009
  • Laser induced breakdown spectroscopy(LIBS) is an simple analysis method for directly quantifying many kinds of soil micro-elements on site using a small size of laser without pre-treatment at any property of materials(solid, liquid and gas). The purpose of this study were to find an optimum condition of the LIBS measurement including wavelengths for quantifying soil elements, to relate spectral properties to the concentration of soil elements using LIBS as a simultaneous un-breakdown quantitative analysis technology, which can be applied for the safety assessment of agricultural products and precision agriculture, and to compare the results with a standardized chemical analysis method. Soil samples classified as fine-silty, mixed, thermic Typic Hapludalf(Memphis series) from grassland and uplands in Tennessee, USA were collected, crushed, and prepared for further analysis or LIBS measurement. The samples were measured using LIBS ranged from 200 to 600 nm(0.03 nm interval) with a Nd:YAG laser at 532 nm, with a beam energy of 25 mJ per pulse, a pulse width of 5 ns, and a repetition rate of 10 Hz. The optimum wavelength(${\lambda}nm$) of LIBS for estimating soil and plant elements were 308.2 nm for Al, 428.3 nm for Ca, 247.8 nm for T-C, 438.3 nm for Fe, 766.5 nm for K, 85.2 nm for Mg, 330.2 nm for Na, 213.6 nm for P, 180.7 nm for S, 288.2 nm for Si, and 351.9 nm for Ti, respectively. Coefficients of determination($r^2$) of calibration curve using standard reference soil samples for each element from LIBS measurement were ranged from 0.863 to 0.977. In comparison with ICP-AES(Inductively coupled plasma atomic emission spectroscopy) measurement, measurement error in terms of relative standard error were calculated. Silicon dioxide(SiO2) concentration estimated from two methods showed good agreement with -3.5% of relative standard error. The relative standard errors for the other elements were high. It implies that the prediction accuracy is low which might be caused by matrix effect such as particle size and constituent of soils. It is necessary to enhance the measurement and prediction accuracy of LIBS by improving pretreatment process, standard reference soil samples, and measurement method for a reliable quantification method.

Quality characteristics of takju by different method of rice pre-treated (밑술 담금 방법을 달리한 탁주의 품질 특성)

  • Lee, Dae-Hyoung;Seo, Jae-Soon;Shin, Bok-Eum;Lee, Yong Seon;Cho, Chang Hui
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.640-647
    • /
    • 2021
  • In this study, we analyzed three rice pre-treatment methods for the preparation of mit-sool (first mashing), with godubap (steamed rice), beombeok (undercooked porridge), and juk (porridge). The results can provide basic data for the development of takju with improved quality. In terms of the base alcohol, godubap produced the highest amount of alcohol (8.1%) after two days, followed by beombeok and juk. After two days of fermentation, soluble solids were measured at 15.3, 15.1, and 1.4°Brix in beombeok, juk, and godubap, respectively, The glucose content of godubap did not change significantly; however, the maltose content increased. In beombeok, maltose decreased from 16.48 mg/mL on the initial day 0 to 1.27 mg/mL on day 9. In juk, glucose and maltose increased from 14.05 and 11.49 mg/mL on day 0 to 31.39 and 42.53 mg/mL on day 2, respectively. Succinic acid levels increased in the godubap and beombeok mit-sool. However, succinic acid was not detected in godubap and juk during the initial stage of fermentation, and lactic acid was not detected in beombeok mit-sool. During the fermentation stage of deot-sool (second mashing), the highest alcohol content of takju made with godubap alcohol was 18.0% and the lowest alcohol content was 15.1% in beombeok on day 9. The total acidity was as high as 0.54% for beombeok, 0.41% for juk, and 0.39% for godubap. In the flavor analysis, ethyl caprate and ethyl caprylate, which were high on day 0 in godubap, decreased upon the completion of fermentation on day 9. Banana-flavored isoamyl alcohol content increased. For juk, ethyl caprate and ethyl caprylate, which were high on day 0, decreased on day 9. Flavor components, such as ethyl palmitate and ethyl linoleate were increased.

Development of Prediction Model for Capsaicinoids Content in Red-Pepper Powder Using Near-Infrared Spectroscopy - Particle Size Effect (근적외선 스펙트럼을 이용한 고춧가루의 캡사이신 함량 예측 모델 개발 - 입자의 영향)

  • Mo, Changyeun;Kang, Sukwon;Lee, Kangjin;Lim, Jong-Guk;Cho, Byoung-Kwan;Lee, Hyun-Dong
    • Food Engineering Progress
    • /
    • v.15 no.1
    • /
    • pp.48-55
    • /
    • 2011
  • In this research, the near-infrared absorption from 1,100-2,300 nm was used to measure the content of capsaicinoids in the red-pepper powder by using the Acousto-optic tunable filters (AOTF) spectrometer with sample plate and sample rotating unit. Non-spicy red-pepper samples from one location (Younggwang-gun. Korea) were mixed with spicy one (var. Chungyang) to make samples separated by particle size (below 0.425 mm, 0.425-0.71 mm, and 0.71- 1.4 mm). The Partial Least Squares Regression (PLSR) model to predict the capsaicinoid content on particle sizes was developed with measured spectra by AOTF spectrometer and used to analyze the amount of capsaicinoids by HPLC. The PLSR Model of red-pepper powder of below 0.425 mm, 0.425-0.71 mm, and 0.71-1.4 mm with cross validation had ${R_V}^2$ = 0.948-0.979 and Standard Error of Prediction (SEP) = 6.56-7.94 mg%. The prediction error of smaller particle size of red-pepper powder was low. The best PLSR model was found in pretreatment of Range Normalization, Standard Normal Variate, and 1st Derivatives of red-pepper powder of below 1.4 mm with cross validation, having ${R_V}^2$ = 0.959 and SEP = 8.82 mg%.

Relationship between Reactive Oxygen Species and Adenosine Monophosphate-activated Protein Kinase Signaling in Apoptosis Induction of Human Breast Adenocarcinoma MDA-MB-231 Cells by Ethanol Extract of Citrus unshiu Peel (진피 추출물에 의한 인간유방암 MDA-MB-231 세포의 apoptosis 유도에서 ROS 및 AMPK의 역할)

  • Kim, Min Yeong;HwangBo, Hyun;Ji, Seon Yeong;Hong, Su-Hyun;Choi, Sung Hyun;Kim, Sung Ok;Park, Cheol;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.410-420
    • /
    • 2019
  • Citrus unshiu peel extracts possess a variety of beneficial effects, and studies on their anticancer activity have been reported. However, the exact mechanisms underlying this activity remain unclear. In the current study, the apoptotic effect of ethanol extract of C. unshiu peel (EECU) on human breast adenocarcinoma MDA-MB-231 cells and related mechanisms were investigated. The results showed that the survival rate of MDA-MB-231 cells treated with EECU was significantly inhibited in a concentration-dependent manner, which was associated with the induction of apoptosis. EECU-induced apoptosis was associated with the activation of caspase-8 and caspase-9, which initiate extrinsic and intrinsic apoptosis pathways, respectively, and caspase-3, a representative effect caspase. EECU suppressed the expression of the inhibitor of apoptosis family of proteins, leading to an increased Bax/Bcl-2 ratio and proteolytic degradation of poly (ADP-ribose) polymerase. EECU also enhanced the loss of the mitochondrial membrane potential and cytochrome c release from the mitochondria to the cytosol, along with truncation of Bid. In addition, EECU activated AMP-activated protein kinase (AMPK), and compound C, an AMPK inhibitor, significantly weakened EECU-induced apoptosis and cell viability reduction. Furthermore, EECU promoted the generation of reactive oxygen species (ROS), which acted as upstream signals for AMPK activation as pretreatment of cells, with the antioxidant N-acetyl cysteine reversing both EECU-induced AMPK activation and apoptosis. Collectively, these findings suggest that EECU inhibits MDA-MB-231 adenocarcinoma cell proliferation by activating intrinsic and extrinsic apoptotic pathways, which was mediated through ROS/AMPK-dependent pathways.

Preparation and Characterization of Bamboo-based Activated Carbon by Phosphoric Acid and Steam Activation (인산 및 수증기 활성화에 의한 대나무 활성탄 제조 및 특성 연구)

  • Park, Jeong-Woo;Ly, Hoang Vu;Oh, Changho;Kim, Seung-Soo
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.129-139
    • /
    • 2019
  • Bamboo is an evergreen perennial plant, and it is known as one of the most productive and fastest-growing plants in the world. It grows quickly in moderate climates with only moderate water and fertilizer. Traditionally in Asia, bamboo is used for building materials, as a food source, and as versatile raw materials. Bamboo as a biomass feedstock can be transformed to prepare activated carbon using the thermal treatment of pyrolysis. The effect of process variables such as carbonization temperature, activation temperature, activation time, the amount of steam, and the mixing ratio of phosphoric acid and bamboo were systematically investigated to optimize the preparation conditions. Steam activation was proceeded after carbonization with a vapor flow rate of $0.8{\sim}1.8mL-H_2O\;g-char^{-1}\;h^{-1}$ and activation time of 1 ~ 3 h at $700{\sim}900^{\circ}C$. Carbon yield and surface area reached 2.04 ~ 20.59 wt% and $499.17{\sim}1074.04m^2\;g^{-1}$, respectively, with a steam flow rate of $1.4mL-H_2O\;g-char^{-1}\;h^{-1}$ for 2 h. Also, the carbon yield and surface area were 24.67 wt% and $1389.59m^2\;g^{-1}$, respectively, when the bamboo and phosphoric acid were mixed in a 1:1 weight ratio ($700^{\circ}C$, 2 h, $1.4mL-H_2O\;g-char^{-1}\;h^{-1}$). The adsorption of methylene blue into the bamboo activated carbon was studied based on pseudo first order and second order kinetics models. The adsorption kinetics were found to follow the pseudo second order model, which is governed by chemisorption.

Ethanol Extract of Glycyrrhiza uralensis Protects Against Oxidative Stress-induced DNA Damage and Apoptosis in Retinal Pigment Epithelial Cells (망막색소상피세포에서 감초 추출물의 산화적 스트레스에 의한 DNA 손상 및 apoptosis 유발의 차단 효과)

  • Kim, So Young;Kim, Jeong-Hwan;Kim, Sung Ok;Park, Seh-Kwang;Jeong, Ji-Won;Kim, Mi-Young;Lee, Hyesook;Cheong, JaeHun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1273-1280
    • /
    • 2019
  • Age-related macular degeneration (AMD) is one of the leading causes of blindness in the elderly population, and damage to retinal pigment epithelial (RPE) cells due to oxidative stress contributes to the development of AMD. Glycyrrhiza uralensis Fischer is one of the most widely used herbal medicines for the treatment of various diseases in Asian countries. Although recent studies indicated that treatment with G. uralensis can protect cells from oxidative stress, its mechanisms in RPE cells remain unknown. We evaluated the effect of a G. uralensis ethanol extract (GU) on $H_2O_2$-induced oxidative injury in ARPE-19 RPE cells. The GU pretreatment attenuated reactive oxygen species (ROS) generation induced by $H_2O_2$, which was associated with induced expression of nuclear factor erythroid-derived-2-like 2 (Nrf2) and heme oxygenase-1 (HO-1). GU also suppressed $H_2O_2$-induced DNA damage and mitochondrial dysfunction. The inhibitory effect of GU on $H_2O_2$-induced apoptosis was associated with the protection of caspase-3 activation. Overall, GU appeared to protect RPE cells from oxidative injury by inhibiting DNA damage and reducing apoptosis. Further studies are needed to determine the regulation of Nrf2-mediated HO-1 expression, but our results suggest the possibility of using GU to reduce the risk of AMD.

Neuroprotective effect of fermented ginger extracts by Bacillus subtilis in SH-SY5Y cells (고초균에 의한 생강 발효 추출물의 신경세포 보호 효과)

  • Yang, Hee Sun;Kim, Mi Jin;Kim, Mina;Choe, Jeong-sook
    • Journal of Nutrition and Health
    • /
    • v.54 no.6
    • /
    • pp.618-630
    • /
    • 2021
  • Purpose: The ginger rhizome (Zingiber officinale) is widely cultivated as a spice for its aromatic and pungent components. One of its constituents, 6-hydroxydopamine (6-OHDA) is usually thought to cross the cell membrane through dopamine uptake transporters, and induce inhibition of mitochondrial respiration and the generation of intracellular reactive oxygen species (ROS). This study examines the neuroprotective effect and acetylcholinesterase (AChE) inhibitory activity of fermented ginger extracts (FGEs) on 6-OHDA induced toxicity in SH-SY5Y human neuroblastoma cells. Methods: Ginger was fermented using 2 species of Bacillus subtilis, with or without enzyme pretreatment. Each sample was extracted with 70% ethanol. Neurotoxicity was assessed by applying the EZ-Cytox cell viability assay and by measuring lactic dehydrogenase (LDH) release. Morphological changes of apoptotic cell nuclei were observed by Hoechst staining. Cell growth and apoptosis of SH-SY5Y cells were determined by Western blotting and enzyme activity analysis of caspase-3, and AChE enzymatic activity was determined by the colorimetric assay. Results: In terms of cell viability and LDH release, exposure to FGE showed neuroprotective activities against 6-OHDA stimulated stress in SH-SY5Y cells. Furthermore, FGE reduced the 6-OHDA-induced apoptosis, as determined by Hoechst staining. The occurrence of apoptosis in 6-OHDA treated cells was confirmed by determining the caspase-3 activity. Exposure to 6-OHDA resulted in increased caspase-3 activity of SH-SY5Y cells, as compared to the unexposed group. However, pre-treatment with FGE inhibited the activity of caspase-3. The neuroprotective effects of FGE were also found to be caspase-dependent, based on reduction of caspase-3 activity. Exposure to FGE also inhibited the activity of AChE induced by 6-OHDA, in a dose-dependent manner. Conclusion: Taken together, our results show that FGE exhibits a neuroprotective effect in 6-OHDA treated SH-SY5Y cells, thereby making it a potential novel agent for the prevention or treatment of neurodegenerative disease.

Characterization of Sedimentation and pH Neutralization as Pretreatment of Acid Contaminated Water (산 오염수 전처리용 침전 및 중화 특성)

  • Im, Jongdo;Lee, Sangbin;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.9
    • /
    • pp.33-40
    • /
    • 2022
  • Sedimentation and pH neutralization has been investigated as preteatment of acid contaminate water. The settling and neutralizing process derive more effective degradation efficiency as the pre-treatment process before the removal process of adsorption, volatile, biodegradation, or oxidation. Settling velocity, uniformity coefficient, coefficient of curvature, and grain size index can define in the sedimentation process for characteristics of the soil. The stainless steel sieve has been used to separate each particle size of the dry soil by assembling in order of 4, 10, 20, 40, 80, 100, and 200 mesh sizes. The soil from Gamcheon Port in Busan drops upper side of the sieve and shakes back and forth to separate each different size of the particle. The 1L of Imhoff cone and 200 mL of the mass cylinder were used as settling tanks to calculate settling velocity. Stokes' equation was used to figure out the average density of dry soil with a value from settling velocity. In the results, the average particle density and lowest settling velocity were 1.93 g/cm3 and 0.11 cm/s, respectively. These values can detect the range of settling points of sediment to prevent chemical accidents. In pH neutralization, the initial pH of 2, 3, 4, and 5 of nitric acid and sulfuric acid are used as an acid solution; 0.1, 0.01, and 0.001 M of sodium hydroxide and calcium hydroxide are used as a base solution. The main goal of this experiment is to figure out the volume percentage of the acid solution becomes pH 7. The concentration of 0.001 M of base solution exceeds all the conditions, 0.01 M exceeds partially, and 0.1 M does not exceed 5 v/v% except pH 2. Calcium hydroxide present less volume than sodium hydroxide at pH neutralization both sulfuric and nitric acid.

The Induction of ROS-dependent Autophagy by Particulate Matter 2.5 and Hydrogen Peroxide in Human Lung Epithelial A549 Cells (미세먼지와 산화적 스트레스에 의한 인간 폐 상피 A549 세포에의 ROS 의존적 자가포식 유도)

  • Park, Beom Su;Kim, Da Hye;Hwangbo, Hyun;Lee, Hyesook;Hong, Su Hyun;Cheong, Jaehun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.310-317
    • /
    • 2022
  • Recently, interest in the harmful factors of particulate matter (PM), a major component of air pollution, has been increasing. In particular, PM2.5 with a diameter of less than 2.5 ㎛ is well known to induce oxidative stress accompanied by autophagy in human lung epithelial cells. However, studies on whether PM2.5 increases autophagy under oxidative stress and whether this process is reactive oxygen species (ROS)-dependent are insufficient. Therefore, in this study, we investigated whether PM2.5 promotes autophagy through the generation of ROS in human alveolar epithelial A594 cells. According to our results, cells co-treated with PM2.5 and hydrogen peroxide (H2O2) showed a lower cell viability than cells treated with each alone, which was associated with increased total and mitochondrial ROS production. The co-treatment of PM2.5 and H2O2 also increased autophagy induction, which was confirmed through Cyto-ID staining, and the expression of autophagy biomarker proteins increased. However, when ROS generation was artificially blocked by N-acetyl-L-cysteine pretreatment, the reduction in cell viability and induction of autophagy by PM2.5 and H2O2 co-treatment were markedly attenuated. Therefore, the present results suggest that PM2.5-induced ROS generation may play a critical role in autophagy induction in A549 cells.

Effects of Thawing Conditions in Sample Treatment on the Chemical Properties of East Siberian Ice Wedges (동시베리아 얼음쐐기 시료의 해동방법이 시료의 화학적 특성분석에 미치는 영향)

  • Subon Ko;Jinho Ahn;Alexandre Fedorov;Giehyeon Lee
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.727-736
    • /
    • 2022
  • Ice wedges are subsurface ice mass structures that formed mainly by freezing precipitation with airborne dust and surrounding soil particles flowed through the active layer into the cracks growing by repeating thermal contractions in the deeper permafrost layer over time. These ice masses characteristically contain high concentrations of solutes and solids. Because of their unique properties and distribution, the possibility of harnessing ice wedges as an alternative archive for reconstructing paleoclimate and paleoenvironment has been recently suggested despite limited studies. It is imperative to preserve the physicochemical properties of the ice wedge (e.g., solute concentration, mineral particles) without any potential alteration to use it as a proxy for reconstructing the paleo-information. Thawing the ice wedge samples is prerequisite for the assessment of their physicochemical properties, during which the paleo-information could be unintentionally altered by any methodological artifact. This study examined the effect of thawing conditions and procedures on the physicochemical properties of solutes and solid particles in ice wedge samples collected from Cyuie, East Siberia. Four different thawing conditions with varying temperatures (4 and 23℃) and oxygen exposures (oxic and anoxic) for the ice wedge sample treatment were examined. Ice wedge samples thawed at 4℃ under anoxic conditions, wherein biological activity and oxidation were kept to a minimum, were set as the standard thawing conditions to which the effects of temperature and oxygen were compared. The results indicate that temperature and oxygen exposure have negligible effects on the physicochemical characteristics of the solid particles. However, the chemical features of the solution (e.g., pH, electric conductivity, alkalinity, and concentration of major cations and trace elements) at 4℃ under oxic conditions were considerably altered, compared to those measured under the standard thawing conditions. This study shows that the thawing condition of ice wedge samples can affect their chemical features and thereby the geochemical information therein for the reconstruction of the paleoclimate and/or paleoenvironment.