• 제목/요약/키워드: PRAM

검색결과 141건 처리시간 0.036초

SSD의 성능향상을 위한 접근빈도에 따른 데이터 할당 및 교체기법 (Data allocation and Replacement Method based on The Access Frequency for Improving The Performance of SSD)

  • 양유석;김덕환
    • 전자공학회논문지CI
    • /
    • 제48권5호
    • /
    • pp.74-82
    • /
    • 2011
  • SSD는 낸드 플래시 메모리의 배열로 구성되어 있기 때문에 하드 디스크와는 달리 블록 당 쓰기 가능 횟수가 정해져 있고, 덮어쓰기가 불가능 하다는 특성을 가지고 있다. 이와 같이 기존의 하드 디스크와는 다른 특징을 갖는 SSD를 효과적으로 관리하기 위해 FTL을 이용한다. FTL은 맵핑 방식에 따라 페이지, 블록, 로그 블록 맵핑 방식으로 구분하는데, 그 중 로그 블록 맵핑 방식 기법 중 BAST와 FAST는 합병 연산 시 페이지 복사와 삭제 연산이 많이 발생하여 SSD의 성능이 떨어지는 문제를 갖고 있다. 본 논문에서는 이를 해결하기 위하여 SSD 내부에 PRAM을 접근빈도 체크영역 및 로그 블록과 Hot 데이터를 저장하는 영역으로 할당하여 접근빈도에 따라 데이터를 할당하는 기법 및 교체기법을 제안한다. 제안된 방법은 접근빈도에 따라 Cold 데이터는 플래시 메모리에 할당하며 덮어쓰기가 가능한 PRAM에 로그 블록과 접근 빈도가 높은 데이터를 할당함으로써, 합병 연산 및 삭제 연산을 줄여 SSD의 성능과 수명을 향상시킬 수 있다. 또한 용량의 한계가 있는 PRAM의 활용률을 높이기 위해 데이터 교체 방법을 사용한다. 실험결과 삭제연산의 경우 제안한 방법이 BAST에 비해 약 46%정도 FAST에 비해 약 38%정도 횟수가 감소되었고, 쓰기 성능의 경우 각각 기존 BAST, FAST에 비해 34%, 19%의 성능이 향상되었고, 읽기 성능 역시 각각 5%, 3%의 성능 향상을 보였다.

PRAM 용 GST계 상변화 박막의 조성에 따른 특성 (Properties of GST Thin Films for PRAM with Composition)

  • 장낙원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권6호
    • /
    • pp.707-712
    • /
    • 2005
  • PRAM (Phase change random access memory) is one of the most promising candidates for next generation Non-volatile Memories. The Phase change materials have been researched in the field of optical data storage media. Among the phase change materials. $Ge_2Sb_2Te_5$ is very well known for its high optical contrast in the state of amorphous and crystalline. However the characteristics required in solid state memory are quite different from optical ones. In this study. the structural Properties of GeSbTe thin films with composition were investigated for PRAM. The 100-nm thick $Ge_2Sb_2Te_5$ and $Sb_2Te_3$ films were deposited on $SiO_2/Si$ substrates by RF sputtering system. In order to characterize the crystal structure and morphology of these films. x-ray diffraction (XRD). atomic force microscopy (AFM), differential scanning calorimetry (DSC) and 4-point measurement analysis were performed. XRD and DSC analysis result of GST thin films indicated that the crystallization of $Se_2Sb_2Te_5$ films start at about $180^{\circ}C$ and $Sb_2Te_3$ films Start at about $125^{\circ}C$.

Electrical Characteristics of PRAM Cell with Nanoscale Electrode Contact Size

  • 남기현;윤영준;맹광석;김경미;김정은;정홍배
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.282-282
    • /
    • 2011
  • Low power consuming operation of phase-change random access memory (PRAM) can be achieved by confining the switching volume of phase change media into nanometer scale. Ge2Sb2Te5 (GST) is one of the best materials for the phase change random access memory (PRAM) because the GST has two stable states, namely, high and low resistance values, which correspond to the amorphous and crystalline phases of GST, respectively. However, achieving the fast operation speed at lower current requires an alternative chalcogenide material to replace the GST and shrinking the dimension of programmable volume. In this paper, we have fabricated nanoscale contact area on Ge2Sb2Te5 thin films with trimming process. The GST material was fabricated by melt quenching method and the GST thin films were deposited with thickness of 100 nm by the electron beam evaporation system. As a result, the reset current can be safely scaled down by reducing the device contact area and we could confirmed the phase-change characteristics by applying voltage pulses.

  • PDF

발열 전극에 따른 상변화 메모리 소자의 전자장 및 열 해석 (Electromagnetic and Thermal Analysis of Phase Change Memory Device with Heater Electrode)

  • 장낙원;마석범;김홍승
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권4호
    • /
    • pp.410-416
    • /
    • 2007
  • PRAM (Phase change random access memory) is one of the most promising candidates for next generation non-volatile memories. However, the high reset current is one major obstacle to develop a high density PRAM. One way of the reset current reduction is to change the heater electrode material. In this paper, to reduce the reset current for phase transition, we have investigated the effect of heater electrode material parameters using finite element analysis. From the simulation. the reset current of PRAM cell is reduced from 2.0 mA to 0.72 mA as the electrical conductivity of heater is decreased from $1.0{\times}10^6\;(1/{\Omega}{\cdot}m$) to $1.0{\times}10^4\;(1/{\Omega}{\cdot}m$). As the thermal conductivity of heater is decreased, the reset current is slightly reduced. But the reset current of PRAM cell is not changed as the specific heat of heater is changed.

PRAM에서 $Ge_1Se_1Te_2$와 전극의 접촉 면적을 줄이는 방법에 대한 효과 (Reduced contact size in $Ge_1Se_1Te_2$ for phase change random access memory)

  • 임동규;김재훈;나민석;최혁;정홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.154-155
    • /
    • 2007
  • PRAM(Phase-Change RAM) is a promising memory that can solve the problem of conventional memory and has the nearly ideal memory characteristics. We reviewed the issues for high density PRAM integration. Writing current reduction is the most urgent problem for high density PRAM realization. So, we studied new constitution of $Ge_1Se_1Te_2$ chalcogenide material and presented the method of reducing the contact size between $Ge_1Se_1Te_2$ and electrode. A small-contact-area electrode is used primarily to supply current into and minimize heat loss from the chalcogenide. In this letter, we expect the method of reducing the contact size between $Ge_1Se_1Te_2$ and electrode to decrease writing current.

  • PDF

PRAM용 GST계 박막의 조성에 따른 특성 (Properties of GST Thin Films for PRAM with Composition)

  • 정명훈;장낙원;김홍승;류상욱;이남열;윤성민;박영삼;이승윤;유병곤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.203-204
    • /
    • 2005
  • PRAM (Phase change Random Access Memory) is one of the most promising candidates for next generation Non-volatile Memories. The Phase change material has been researched in the field of optical data storage media. Among the phase change materials $Ge_2Sb_2Te_5$(GST) is very well known for its high optical contrast in the state of amorphous and crystalline. However, the characteristics required in solid state memory are quite different from optical ones. In this study, the structural properties of GST thin films with composition were investigated for PRAM. The 100-nm thick GeTe and $Sb_2Te_3$ films were deposited on $SiO_2$/Si substrates by RF sputtering system. In order to characterize the crystal structure and morphology of these films, we performed x-ray diffraction (XRD) and atomic force microscopy (AFM).

  • PDF

상변환 메모리의 응용을 위한 Ge2Sb2Te5 박막의 상변환 거동 평가 (Evaluation of Phase Transition Behavior of Ge2Sb2Te5 Thin Film for Phase Change Random Access Memory)

  • 도우혁;김성순;배준현;차준호;김경호;이영국;이홍림
    • 한국세라믹학회지
    • /
    • 제44권1호
    • /
    • pp.18-22
    • /
    • 2007
  • The phase transition behavior of $Ge_2Sb_2Te_5$ (GST) thin film, which is a candidate material of recording layer for phase change random access memory (PRAM), has been evaluated using an in-situ reflectance measurement method. The experimental data have been analyzed by using johnson-mehl-avrami-kolomogorov (JMAK) model. JMAK model can be used only in isothermal state. However, temperature changes with time during the operation of PRAM. To apply JMAK equation to PRAM simulation, it has been assumed that the temperature increases stepwise and isothermally. By using JMAK equation and assumption for the transient state, the phase transition behavior of GST thin film has been predicted under $3^{\circ}C/min$ heating rate in this study. The simulation result agrees well with the experimental results. Therefore, It can be concluded that JMAK equation can be used far the PRAM simulation model.

An Efficient Parallel Algorithm for the Single Function Coarsest Partition Problem on the EREW PRAM

  • Ha, Kyeoung-Ju;Ku, Kyo-Min;Park, Hae-Kyeong;Kim, Young-Kook;Ryu, Kwan-Woo
    • ETRI Journal
    • /
    • 제21권2호
    • /
    • pp.22-30
    • /
    • 1999
  • In this paper, we derive an efficient parallel algorithm to solve the single function coarsest partition problem. This algorithm runs in O(\log2n) time using O(nlogn) operations on the EREW PRAM with O(n) memory cells used. Compared with the previous PRAM algorithms that consume O(n1+${\varepsilon}$) memory cells for some positive constant ${\varepsilon}\>0$, our algorithm consumes less memory cells without increasing the total number of operations.

  • PDF

Widely Tunable Adaptive Resolution-controlled Read-sensing Reference Current Generation for Reliable PRAM Data Read at Scaled Technologies

  • Park, Mu-hui;Kong, Bai-Sun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제17권3호
    • /
    • pp.363-369
    • /
    • 2017
  • Phase-change random access memory (PRAM) has been emerged as a potential memory due to its excellent scalability, non-volatility, and random accessibility. But, as the cell current is reducing due to cell size scaling, the read-sensing window margin is also decreasing due to increased variation of cell performance distribution, resulting in a substantial loss of yield. To cope with this problem, a novel adaptive read-sensing reference current generation scheme is proposed, whose trimming range and resolution are adaptively controlled depending on process conditions. Performance evaluation in a 58-nm CMOS process indicated that the proposed read-sensing reference current scheme allowed the integral nonlinearity (INL) to be improved from 10.3 LSB to 2.14 LSB (79% reduction), and the differential nonlinearity (DNL) from 2.29 LSB to 0.94 LSB (59% reduction).