• Title/Summary/Keyword: PR selectivity

Search Result 48, Processing Time 0.025 seconds

Fabrication of $100{\mu}m$ High Metallic Structure Using Negative Thick Photoresist and Electroplating (Negative Thick Photoresist를 이용한 $100{\mu}m$ 높이의 금속 구조물의 제작에 관한 연구)

  • Chang, Hyun-Kee;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2541-2543
    • /
    • 1998
  • This paper describes the fabrication process to fabricate metallic structure of high aspect ratio using LlGA-like process. SU-8 is used as an electroplating mold. SU-8 is an epoxy-based photoresist, designed for ultrathick PR structure with single layer coating [1,2]. We can get more than $100{\mu}m$ thick layer by single coating with conventional spin coater, and applying multiple coating can make thicker layers. In the experiments, we used different kinds of SU-8, having different viscosity. To optimize the conditions for mold fabrication process, experiments are performed varying spinning time and speed, soft-bake, develop and PEB (Post Expose Bake) condition. With the optimized condition, minimum line and space of $3{\mu}m$ pattern with a thickness of $40{\mu}m$ and $4{\mu}m$ pattern with a thickness of $130{\mu}m$ were obtained. Using the patterned PR as a plating mold, metallic structure was fabricated by electroplating. We have fabricated a electroplated nickel comb actuator using SU-8 as plating mold. The thickness of PR mold is $45{\mu}m$ and that of plated nickel is$40{\mu}m$. Minimum line of the mold is $5{\mu}m$. Patterned metallic layer or polymer layer, which has selectivity with the structural plated metallic layer, can be used as sacrificial layer for fabrication of free-standing structure.

  • PDF

UV-nanoimprint Patterning Without Residual Layers Using UV-blocking Metal Layer (UV 차단 금속막을 이용한 잔류층이 없는 UV 나노 임프린트 패턴 형성)

  • Moon Kanghun;Shin Subum;Park In-Sung;Lee Heon;Cha Han Sun;Ahn Jinho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.275-280
    • /
    • 2005
  • We propose a new approach to greatly simplify the fabrication of conventional nanoimprint lithography (NIL) by combined nanoimprint and photolithography (CNP). We introduce a hybrid mask mold (HMM) made from UV transparent material with a UV-blocking Cr metal layer placed on top of the mold protrusions. We used a negative tone photo resist (PR) with higher selectivity to substrate the CNP process instead of the UV curable monomer and thermal plastic polymer that has been commonly used in NIL. Self-assembled monolayer (SAM) on HMM plays a reliable role for pattern transfer when the HMM is separated from the transfer layer. Hydrophilic $SiO_2$ thin film was deposited on all parts of the HMM, which improved the formation of SAM. This $SiO_2$ film made a sub-10nm formation without any pattern damage. In the CNP technique with HMM, the 'residual layer' of the PR was chemically removed by the conventional developing process. Thus, it was possible to simplify the process by eliminating the dry etching process, which was essential in the conventional NIL method.

  • PDF

The Etching Mechanism of $(Ba, Sr)TiO_3$Thin Films in $Ar/CF_4$ High Density Plasma ($Ar/CF_4$ 고밀도 플라즈마에서 $(Ba, Sr)TiO_3$ 박막의 식각 메카니즘)

  • Kim, Seung-Beom;Kim, Chang-Il
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.5
    • /
    • pp.265-269
    • /
    • 2000
  • $(Ba, Sr)TiO_3$thin films were etched with a magnetically enhanced inductively coupled plasma (MEICP) at different CF4/Ar gas mixing ratios. Experimental was done by varying the etching parameters such as rf power, dc bias and chamber pressure. The maximum etch rate of the BST films was $1800{AA}/min$ under $CF_4/(CF_4+Ar)$ of 0.1, 600 W/350 V and 5 mTorr. The selectivity of BST to Pt and PR was 0.6, 0.7, respectively. X-ray photoelectron spectroscopy (XPS) results show that surface reaction between Ba, Sr, Ti and C, F radicals occurs during the (Ba, Sr)TiO3 etching. To analyze the composition of surface residue after the etching, films etched with different CF_4/Ar$ gas mixing ratio were investigated using XPS and secondary ion mass spectroscopy (SIMS).

  • PDF

A Study on the Etching Mechanism of (Ba,Sr)$TiO_3$ Thin Films using MEICP (MEICP에 의한 (Ba,Sr)$TiO_3$ 박막의 식각 메커니즘에 관한 연구)

  • Min, Byung-Jun;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.52-55
    • /
    • 2000
  • In this study, (Ba,Sr)$TiO_3$(BST) thin films were etched with a magnetically enhanced inductively coupled plasma(MEICP) as a function Ar/$CF_4$ gas mixing ratio. Experiment was done by varying the etching parameters such as rf power, dc bias voltage and chamber pressure. The maximum etch rate of the BST films was 1700 ${\AA}/min$ under $CF_4/(CF_4+Ar)$ of 0.1, 600 W/350 V and 5 mTorr. The selectivity of BST to Pt and PR was 0.6, 0.7, respectively. X -ray photoelectron spectroscopy(XPS) studies shows that there are surface reaction between Ba, Sr, Ti and C, F radicals during the etching. To analyze the composition of surface residue remaining after the etching, films etched with different $CF_4$/Ar gas mixing ratio were investigated using XPS.

  • PDF

Etching Characteristics of Polyimide Film as Interlayer Dielectric Using Inductively Coupled ($O_2/CF_4$)Plasma ($O_2/CF_4$ 유도결합 플라즈마를 이용한 Polyimide 박막의 식각 특성)

  • Kang, Pil-Seung;Kim, Chang-Il
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1509-1511
    • /
    • 2001
  • In this study, etching characteristics of polyimide(Pl) film with $O_2/CF_4$ gas mixing ratio was studied using inductively coupled plasma (ICP). The etch rate and selectivity were evaluated to chamber pressure and gas mixing ratio. High etch rate (over 8000$\AA$/min) and vertical profile were acquired in $CF_4$/($CF_4+O_2$) of 0.2. The selectivities of polyimide to PR and polyimide to $SiO_2$ were 1.15, 5.85, respectively. The profiles of polyimide film etched in $CF_4/O_2$ were measured by a scanning electron microscope (SEM) with using an aluminum hard mask pattern. The chemical states on the polyimide film surface were measured by x-ray photoelectron spectroscopy (XPS).

  • PDF

$SiO_2$ Etching in $C_4F_{8}$ Plasma by E-ICP ($C_4F_{8}O_2$ 공정기체와 E-ICP를 이용한 산화막 식각)

  • 송호영;조수범;이종근;오범환;박세근
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.197-200
    • /
    • 2001
  • Novel Enhanced Inductively Coupled Plasma is applied to etch $SiO_2$. Effect of $O_2$ or Ar addition to $C_{4}F_{8}$ gas is monitored by Optical Emission Spectroscopy and Quadrupole Mass Spectrometer. It is fund that Ar or $O_2$ dilution to $C_{4}F_{8}$ increases F emission intensity and decreases $CF_2$ intensity. However, the ac frequency to the Helmholtz coil decreases the F intensity and thus increases $CF_2$/F ratio. By adjusting the ac frequency, the optimum etch rate and PR to $SiO_2$ selectivity can be obtained in E-lCP.

  • PDF

Study of Characteristics Variation of Etching according to Gas Flow in Poly-Si Dry Etching using ICP Poly Etcher (ICP Poly Etcher를 이용한 Poly-Si Dry Etch시 Gas Flow에 따른 Etching 특성 변화 연구)

  • Kim, Dong-Il;Han, Seung-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.180-181
    • /
    • 2015
  • 본 논문에서는 ICP Poly Etcher를 이용한 Dry Etch에서 몇가지 공정조건의 변화에 따른 Etching 특성 변화를 연구하였다. 주요 가스유량들이 증가 할 때, Poly-Si 의 Etch rate는 증가 하였으며 Uniformity는 나빠진 것을 확인 할 수 있었고 다른 특성들은 특별한 변화를 보이지 않았다. 주요 Gas인 HBr의 증가는 PR(Photo Resist)와 Uniformity에 영향을 주었다. 이 논문을 통해 HBr의 유량이 Poly-Si Etching에 영향을 주는 결과를 알아 볼 수 있었고 HBr 가스의 유량 증가가 Polymer의 생성에 영향을 줘 Selectivity와 Uniformity를 증가 시킨다는 것도 확인 해 볼 수 있었다.

  • PDF

Dry Etching Properties of PAR (poly-arylate) Substrate for Flexible Display Application (플렉시블 디스플레이 응용을 위한 폴리아릴레이트 기판의 식각 특성)

  • Hwanga, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.824-828
    • /
    • 2016
  • In this study, effects of ICP (inductively coupled plasma) treatment on PAR thin film have been investigated. A maximum etch rate of the PAR thin films and the selectivity of PAR to PR were obtained as 110 nm/minand 1.1 in the $CF_4/O_2$ (5:15 sccm) gas mixture. We present the surface properties of PAR thin film with various treatment conditions. The surface morphology and cross section of the PAR thin film was observed by AFM (atomic force microscopy) and FE-SEM (filed emission scanning electron microscopy).

The Patterning of Polyimide Thin Films for the Additive $CF_4$ gas ($CF_4$ 첨가에 따른 po1yimide 박막의 패터닝 연구)

  • 강필승;김창일;김상기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.209-212
    • /
    • 2001
  • Polyimide(PI) films have been considered as the interlayer dielectric materials due to low dielectric constant, low water absorption, high gap-fill and planarization capability. The PI film was etched with using inductively coupled plasma (ICP). The etching characteristics such as etch rate and selectivity were evaluated to gas mixing ratio. High etch rate was 8300$\AA$/min and vertical profile was approximately acquired 90$^{\circ}$ at CF$_4$/(CF$_4$+O$_2$) of 0.2. The selectivies of polyimide to PR and SiO$_2$ were 1.2, 5.9, respectively. The etching profiles of PI films with an aluminum pattern were measured by a scanning electron microscope (SEM). The chemical states on the PI film surface were investigated by x-ray photoelectron spectroscopy (XPS). Radical densities of oxygen and fluorine in different gas mixing ratio of 07CF4 were investigated by optical emission spectrometer (OES).

  • PDF

Effects of $CH_{2}F_{2}$ and $H_2$ flow rates on process window for infinite etch selectivity of silicon nitride to PVD a-C in dual-frequency capacitively coupled plasmas

  • Kim, Jin-Seong;Gwon, Bong-Su;Park, Yeong-Rok;An, Jeong-Ho;Mun, Hak-Gi;Jeong, Chang-Ryong;Heo, Uk;Park, Ji-Su;Lee, Nae-Eung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.250-251
    • /
    • 2009
  • For the fabrication of a multilevel resist (MLR) based on a very thin amorphous carbon (a-C) layer an $Si_{3}N_{4}$ hard-mask layer, the selective etching of the $Si_{3}N_{4}$ layer using physical-vapor-deposited (PVD) a-C mask was investigated in a dual-frequency superimposed capacitively coupled plasma etcher by varying the following process parameters in $CH_{2}F_{2}/H_{2}/Ar$ plasmas : HF/LF powr ratio ($P_{HF}/P_{LF}$), and $CH_{2}F_{2}$ and $H_2$ flow rates. It was found that infinitely high etch selectivities of the $Si_{3}N_{4}$ layers to the PVD a-C on both the blanket and patterned wafers could be obtained for certain gas flow conditions. The $H_2$ and $CH_{2}F_{2}$ flow ratio was found to play a critical role in determining the process window for infinite $Si_{3}N_{4}$/PVDa-C etch selectivity, due to the change in the degree of polymerization. Etching of ArF PR/BARC/$SiO_x$/PVDa-C/$Si_{3}N_{4}$ MLR structure supported the possibility of using a very thin PVD a-C layer as an etch-mask layer for the $Si_{3}N_{4}$ layer.

  • PDF