• 제목/요약/키워드: PPO (Proximal Policy Optimization)

검색결과 24건 처리시간 0.024초

Multi-Agent Deep Reinforcement Learning for Fighting Game: A Comparative Study of PPO and A2C

  • Yoshua Kaleb Purwanto;Dae-Ki Kang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권3호
    • /
    • pp.192-198
    • /
    • 2024
  • This paper investigates the application of multi-agent deep reinforcement learning in the fighting game Samurai Shodown using Proximal Policy Optimization (PPO) and Advantage Actor-Critic (A2C) algorithms. Initially, agents are trained separately for 200,000 timesteps using Convolutional Neural Network (CNN) and Multi-Layer Perceptron (MLP) with LSTM networks. PPO demonstrates superior performance early on with stable policy updates, while A2C shows better adaptation and higher rewards over extended training periods, culminating in A2C outperforming PPO after 1,000,000 timesteps. These findings highlight PPO's effectiveness for short-term training and A2C's advantages in long-term learning scenarios, emphasizing the importance of algorithm selection based on training duration and task complexity. The code can be found in this link https://github.com/Lexer04/Samurai-Shodown-with-Reinforcement-Learning-PPO.

경영 시뮬레이션 게임에서 PPO 알고리즘을 적용한 강화학습의 유용성에 관한 연구 (A Study about the Usefulness of Reinforcement Learning in Business Simulation Games using PPO Algorithm)

  • 양의홍;강신진;조성현
    • 한국게임학회 논문지
    • /
    • 제19권6호
    • /
    • pp.61-70
    • /
    • 2019
  • 본 논문에서는 경영 시뮬레이션 게임 분야에서 강화학습을 적용하여 게임 에이전트들이 자율적으로 주어진 목표를 달성하는지를 확인하고자 한다. 본 시스템에서는 Unity Machine Learning (ML) Agent 환경에서 PPO (Proximal Policy Optimization) 알고리즘을 적용하여 게임 에이전트가 목표를 달성하기 위해 자동으로 플레이 방법을 찾도록 설계하였다. 그 유용성을 확인하기 위하여 5가지의 게임 시나리오 시뮬레이션 실험을 수행하였다. 그 결과 게임 에이전트가 다양한 게임 내 환경 변수의 변화에도 학습을 통하여 목표를 달성한다는 것을 확인하였다.

Cloud Task Scheduling Based on Proximal Policy Optimization Algorithm for Lowering Energy Consumption of Data Center

  • Yang, Yongquan;He, Cuihua;Yin, Bo;Wei, Zhiqiang;Hong, Bowei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권6호
    • /
    • pp.1877-1891
    • /
    • 2022
  • As a part of cloud computing technology, algorithms for cloud task scheduling place an important influence on the area of cloud computing in data centers. In our earlier work, we proposed DeepEnergyJS, which was designed based on the original version of the policy gradient and reinforcement learning algorithm. We verified its effectiveness through simulation experiments. In this study, we used the Proximal Policy Optimization (PPO) algorithm to update DeepEnergyJS to DeepEnergyJSV2.0. First, we verify the convergence of the PPO algorithm on the dataset of Alibaba Cluster Data V2018. Then we contrast it with reinforcement learning algorithm in terms of convergence rate, converged value, and stability. The results indicate that PPO performed better in training and test data sets compared with reinforcement learning algorithm, as well as other general heuristic algorithms, such as First Fit, Random, and Tetris. DeepEnergyJSV2.0 achieves better energy efficiency than DeepEnergyJS by about 7.814%.

Proximal Policy Optimization을 이용한 게임서버의 부하분산에 관한 연구 (A Study on Load Distribution of Gaming Server Using Proximal Policy Optimization)

  • 박정민;김혜영;조성현
    • 한국게임학회 논문지
    • /
    • 제19권3호
    • /
    • pp.5-14
    • /
    • 2019
  • 게임 서버는 분산 서버를 기본으로 하고 있다. 분산 게임서버는 서버의 작업 부하를 분산하기 위한 일련의 알고리즘에 의해 각 게임 서버의 부하를 일정하게 나누어서 클라이언트들의 요청에 대한 서버의 응답시간 및 서버의 가용성을 효율적으로 관리한다. 본 논문에서는 시뮬레이션 환경에서 기존 연구 방식인 Greedy 알고리즘과, Reinforcement Learning의 한 줄기인 Policy Gradient 중 PPO(Proximal Policy Optimazation)을 이용한 부하 분산 Agent를 제안하고, 시뮬레이션 한 후 기존 연구들과의 비교 분석을 통해 성능을 평가하였다.

가상 환경에서의 강화학습을 이용한 비행궤적 시뮬레이션 (Flight Trajectory Simulation via Reinforcement Learning in Virtual Environment)

  • 이재훈;김태림;송종규;임현재
    • 한국시뮬레이션학회논문지
    • /
    • 제27권4호
    • /
    • pp.1-8
    • /
    • 2018
  • 인공지능을 이용하여 목표 지점까지 제어하는 가장 대표적인 방법은 강화학습이다. 하지만 그동안 강화학습을 처리하기 위해서는 구현하기 어렵고 복잡한 연산을 처리해야만 했다. 본 논문에서는 이를 개선한 Proximal Policy Optimization (PPO) 알고리즘을 이용하여 가상환경에서 목표지점에 도달하기 위한 계획된 비행궤적을 찾는 방법을 시뮬레이션 하였다. 또한 외부 환경요소가 비행궤적 학습에 미치는 영항을 알아보기 위하여 궤적의 변화, 보상 값의 영향 및 외부 바람등과 같은 변수를 추가하고 궤적 학습 성능 및 학습 속도에 미치는 영향을 비교 분석을 수행한다. 본 결과를 통하여 에이전트가 다양한 외부환경의 변화에도 계획된 궤적을 찾을 수 있다는 것을 시뮬레이션 결과에 따라 알 수 있었으며, 이는 실제 비행체에 적용할 수 있을 것이다.

근위 정책 최적화를 활용한 자산 배분에 관한 연구 (A Study on Asset Allocation Using Proximal Policy Optimization)

  • 이우식
    • 한국산업융합학회 논문집
    • /
    • 제25권4_2호
    • /
    • pp.645-653
    • /
    • 2022
  • Recently, deep reinforcement learning has been applied to a variety of industries, such as games, robotics, autonomous vehicles, and data cooling systems. An algorithm called reinforcement learning allows for automated asset allocation without the requirement for ongoing monitoring. It is free to choose its own policies. The purpose of this paper is to carry out an empirical analysis of the performance of asset allocation strategies. Among the strategies considered were the conventional Mean- Variance Optimization (MVO) and the Proximal Policy Optimization (PPO). According to the findings, the PPO outperformed both its benchmark index and the MVO. This paper demonstrates how dynamic asset allocation can benefit from the development of a reinforcement learning algorithm.

휴먼형 로봇 손의 사물 조작 수행을 이용한 사람 데모 결합 강화학습 정책 성능 평가 (Evaluation of Human Demonstration Augmented Deep Reinforcement Learning Policies via Object Manipulation with an Anthropomorphic Robot Hand)

  • 박나현;오지헌;류가현;;;김태성
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권5호
    • /
    • pp.179-186
    • /
    • 2021
  • 로봇이 사람과 같이 다양하고 복잡한 사물 조작을 하기 위해서는 휴먼형 로봇 손의 사물 파지 작업이 필수적이다. 자유도 (Degree of Freedom, DoF)가 높은 휴먼형(anthropomorphic) 로봇 손을 학습시키기 위하여 사람 데모(human demonstration)가 결합한 강화학습 최적화 방법이 제안되었다. 본 연구에서는 강화학습 최적화 방법에 사람 데모가 결합한 Demonstration Augmented Natural Policy Gradient (DA-NPG)와 NPG의 성능 비교를 통하여 행동 복제의 효율성을 확인하고, DA-NPG, DA-Trust Region Policy Optimization (DA-TRPO), DA-Proximal Policy Optimization (DA-PPO)의 최적화 방법의 성능 평가를 위하여 6 종의 물체에 대한 휴먼형 로봇 손의 사물 조작 작업을 수행한다. 학습 후 DA-NPG와 NPG를 비교한 결과, NPG의 물체 파지 성공률은 평균 60%, DA-NPG는 평균 99.33%로, 휴먼형 로봇 손의 사물 조작 강화학습에 행동 복제가 효율적임을 증명하였다. 또한, DA-NPG는 DA-TRPO와 유사한 성능을 보이면서 모든 물체에 대한 사물 파지에 성공하였고 가장 안정적이었다. 반면, DA-TRPO와 DA-PPO는 사물 조작에 실패한 물체가 존재하여 불안정한 성능을 보였다. 본 연구에서 제안하는 방법은 향후 실제 휴먼형 로봇에 적용하여 휴먼형 로봇 손의 사물 조작 지능 개발에 유용할 것으로 전망된다.

OpenAI Gym 환경에서 A3C와 PPO의 실험적 분석 (Experimental Analysis of A3C and PPO in the OpenAI Gym Environment)

  • 황규영;임현교;허주성;한연희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.545-547
    • /
    • 2019
  • Policy Gradient 방식의 학습은 최근 강화학습 분야에서 많이 연구되고 있는 주제로, 본 논문에서는 강화학습을 적용시킬 수 있는 OpenAi Gym 의 'CartPole-v0' 와 'Pendulum-v0' 환경에서 Policy Gradient 방식의 Asynchronous Advantage Actor-Critic (A3C) 알고리즘과 Proximal Policy Optimization (PPO) 알고리즘의 학습 성능을 비교 분석한 결과를 제시한다. 딥러닝 모델 등 두 알고리즘이 동일하게 지닐 수 있는 조건들은 가능한 동일하게 맞추면서 Episode 진행에 따른 Score 변화 과정을 실험하였다. 본 실험을 통해서 두 가지 서로 다른 환경에서 PPO 가 A3C 보다 더 나은 성능을 보임을 확인하였다.

Design of track path-finding simulation using Unity ML Agents

  • In-Chul Han;Jin-Woong Kim;Soo Kyun Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.61-66
    • /
    • 2024
  • 본 연구에서는 강화학습 기술을 이용하여, 시뮬레이션이나 게임 환경 내에서 개체의 경로 탐색을 위한 시뮬레이션을 개발하는 것을 목표로 한다. 본 연구에서는 주어진 트랙 위에 생성된 임의 위치의 장애물을 회피하고, 아이템을 획득할 수 있는 경로를 자동으로 탐색할 수 있도록 시뮬레이션 내 개체를 학습시킨 점이 주된 특징이다. 해당 시뮬레이션을 구현하기 위해 유니티 게임 엔진에서 제공하는 ML 에이전트 (Machine Learning Agents)를 사용하였고, PPO(Proximal Policy Optimization)에 기반을 둔 학습 정책을 수립하여 강화학습 환경을 구성한다. 본 논문에서 제안한 강화학습 기반의 시뮬레이션을 통해, 개체가 학습을 진행할수록 장애물을 회피하고, 아이템을 획득할 수 있는 경로를 탐색해 트랙 위를 움직이고 있다는 점을 시뮬레이션 결과와 학습 결과 그래프를 분석하여 확인할 수 있다.

매치 3 게임 플레이를 위한 PPO 알고리즘을 이용한 강화학습 에이전트의 설계 및 구현 (Design and Implementation of Reinforcement Learning Agent Using PPO Algorithim for Match 3 Gameplay)

  • 박대근;이완복
    • 융합정보논문지
    • /
    • 제11권3호
    • /
    • pp.1-6
    • /
    • 2021
  • 매치 3 퍼즐 게임들은 주로 MCTS(Monte Carlo Tree Search) 알고리즘을 사용하여 자동 플레이를 구현하였지만 MCTS의 느린 탐색 속도로 인해 MCTS와 DNN(Deep Neural Network)을 함께 적용하거나 강화학습으로 인공지능을 구현하는 것이 일반적인 경향이다. 본 연구에서는 매치 3 게임 개발에 주로 사용되는 유니티3D 엔진과 유니티 개발사에서 제공해주는 머신러닝 SDK를 이용하여 PPO(Proximal Policy Optimization) 알고리즘을 적용한 강화학습 에이전트를 설계 및 구현하여, 그 성능을 확인해본 결과, 44% 정도 성능이 향상되었음을 확인하였다. 실험 결과 에이전트가 게임 규칙을 배우고 실험이 진행됨에 따라 더 나은 전략적 결정을 도출 해 낼 수 있는 것을 확인할 수 있었으며 보통 사람들보다 퍼즐 게임을 더 잘 수행하는 결과를 확인하였다. 본 연구에서 설계 및 구현한 에이전트가 일반 사람들보다 더 잘 플레이하는 만큼, 기계와 인간 플레이 수준 사이의 간극을 조절하여 게임의 레벨 디지인에 적용된다면 향후 빠른 스테이지 개발에 도움이 될 것으로 기대된다.