• Title/Summary/Keyword: PPG 센서

Search Result 83, Processing Time 0.029 seconds

Compensation of PPG signal distortion due to pressure using FSR sensors (FSR센서를 이용한 압력에 따른 PPG 신호 왜곡 보상)

  • Lee, Jae-Ho;Lee, Young-Jae;Lim, MinGyu;Park, HiJung;Lee, JeongWhan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.01a
    • /
    • pp.281-282
    • /
    • 2013
  • 맥박을 측정하는 방법 중 하나인 PPG(photoplethysmography) 센서는 설계가 비교적 간편하며 사용이 편한 장점이 있지만, 움직임으로 인한 동잡음에 취약하다는 단점이 있다. 본 논문에서는 동잡음으로 인한 센서와 손가락 사이의 밀착되는 압력의 변화를 측정하여 왜곡된 신호를 보상하였다. PPG센서와 손가락 사이의 압력을 측정하기 위하여 FSR(force sensing resistor)센서를 이용하여 측정하였으며, 측정된 압력과 왜곡된 PPG 신호 비교를 통해 왜곡된 PPG신호와 FSR센서에서 얻은 압력 사이의 연관성을 확인하였고, 신호처리를 통하여 왜곡된 신호를 보상 시켰다. 이와 같은 방법으로 PPG신호를 보상하게 된다면 웨어러블한 환경에서의 적용뿐만 아니라 헬스케어로 응용이 가능할 것으로 보인다.

  • PDF

Unconstrained detection of Heart Rate and Respiration using PPG sensor (PPG 센서를 이용한 심박 및 호흡 신호의 무구속적 검출에 대한 연구)

  • Cha, Ji-Young;Choi, Hyun-Seok;Shin, Jae-Yeon;Lee, Kyoung-Joung
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.482-483
    • /
    • 2008
  • 본 연구는 수면 중 무구속적 방식으로 에어 베개에 부착한 PPG 센서에서 호흡 및 심박을 검출하는 방법을 제안하였다. 본 연구에서 사용된 반사형 PPG 센서는 광원이 피부로 투과되어 혈관의 이완 및 수축 정도를 측정할 수 있다. 반사형 PPG 센서로부터 하드웨어 모듈을 통과한 생체 신호는 AD 변환되어 PC로 전송된다 PPG에서 검출된 분당 심박 수는 전송된 신호의 밸리점간의 시간 간격을 이용하여 추출하며 호흡 신호는 밸리점의 크기를 연결하여 추출하였다. 검출된 호흡 신호와 기준 호흡 신호간의 상관성을 확인하기 위해 기준신호로 호흡과 심박을 동시에 측정하여 그 결과를 분석하였다. PPG 센서로부터 획득한 심박 및 호흡 신호는 기준신호들과 높은 상관성을 가지며 호흡시 발생하는 움직임과 호흡 속도에 영향을 받는다는 것을 알 수 있었다.

  • PDF

Implementation of Heart Rate Monitoring System using PPG Sensor (PPG 센서를 이용한 심박 모니터링 시스템 구현)

  • Lee, Won-Seok;Jung, Kyung Kwon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.138-142
    • /
    • 2017
  • Photoplethysmography (PPG) is a simple and low-cost optical technique that can be used to detect blood volume changes in the microvascular bed of tissue. It is often used non-invasively to make measurements at the skin surface. In this paper, we described the implementation heart rate monitoring system using PPG sensor. Proposed system is collected data using PPG sensor and heart rate was detected using second derivative method. In order to verify the effectiveness of the proposed method, we performed the measurements of RR-intervals with a commercial medical device.

Development of portable PPG sensor based on smart phone (스마트폰 기반의 휴대용 PPG센서 개발)

  • Kim, Jung-han;Cho, Kyoung-lae;Kim, Sang-yoon;Kang, Sung-in;Bae, Sung-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.1009-1011
    • /
    • 2013
  • 최근 U-헬스케어 서비스가 증가함에 따라 예방과 건강증진 등에 관심과 연구가 활발히 이루어지고 있다. 이러한 U-헬스케어에 사용되는 ECG, EMG, PPG EEG등이 스마트폰 기반의 휴대용 장비와 연동된 센서들의 연구 역시 활발히 진행 중이다. 일반적으로 PPG신호는 적외선센서를 이용하여 모세혈관의 혈중 헤모글로빈 농도 변화에 의한 맥파를 측정한다. PPG신호의 잡음을 제거하기 위해 필터를 사용하였다. 필터된 정보를 ADC하여 스마트폰으로 BlueTooth통신을 이용하여 전송한다. 최종적으로 스마트 디바이스에 PPG신호를 그린다. 제작결과 PPG아날로그 신호를 보는 것과 동일하게 스마트 디바이스에 그릴 수 있음을 보였다. 이후 PPG신호를 이용하여 혈관건강도 및 건강예방의 측정의 연구를 계속해서 한다.

  • PDF

Development of Blood Pressure Estimation Methods Using The PPG and ECG Sensors (PPG 및 ECG 센서를 이용한 혈압추정 기법 개발)

  • Park, Hyun-Moon;Lee, Jung-Chul;Hwang, Tae-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1257-1264
    • /
    • 2019
  • The traditional cuff-based method for BP(Blood Pressure) measurement is not suitable for continuous real-time BP measurement techniques. For this reason, the previous studies estimated various blood pressures by fusion with the electrocardiography (ECG) and photoplethysmogram (PPG) sensor signals. However, conventional techniques based on PPG bio-sensing measurement face many challenging issues such as noisy supply fluctuation, small pulsation, and drifting non-pulsatile. This paper proposed a novel BP estimation methods using PPG and ECG sensors, which can be derived from the relationship between PPG and ECG using PTT(Pulse Transit Time) and PWV(Pulse Wave Velocity). Unlike conventional height ratio features, which are extracted on the basis of the peaks in the PPG and ECG waveform. The proposed method can be reliably obtained even if there are missing peaks among the sensed PPG signal. The increased reliability comes from periodical estimation of the peak-to-peak interval time using ECG and PPG. After 250,000 times trials of the blood pressure measurement, the proposed estimation technique was verified with the accuracy of ±28.5% error, compared to a commercialized BP device.

Design of Filter to Reject Motion Artifacts of PPG Signal Using Multiwave Optical Source (다파장 광원을 이용한 광용적 맥파의 동잡음 제거 필터 설계)

  • Park, Heejung;Nam, Jaehyun;Lee, Juwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.101-107
    • /
    • 2014
  • This study is proposed the novel PPG sensor device and the signal processing method to replace the acceleration sensor that is used to reject motion artifacts contained in photoplethysmography(PPG). The proposed method is to reject motion artifacts by an adaptive filter based on the estimated motion artifact by using a blue LED light. To evaluate the performance of the proposed method experimentally, We did design a novel sensor consisted of blue/red LEDs and photo-sensor and implemented, and then rejected the motion artifacts by using an adaptive filter and the implemented sensor. In the results of the experiments, it is shown that the proposed sensor device and signal processing can reconstruct the PPG signal despite the occurrence of motion artifacts, and also that the SNR was 4.5 times of moving average filter. According to the experimental results, the proposed method can be applied to design a low-cost device.

Accuracy improvement of respiration rate based on photo-plethysmography by enhancing motion artifact (광용적맥파(PPG)를 이용한 호흡수 측정에 있어서 동잡음을 이용한 정확도 향상)

  • Huh, Young-Jung;Yoon, Gil-Won
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.447-453
    • /
    • 2008
  • Respiration rate is one of the important vital signs. Photo-plethysmography (PPG) measurement especially on a finger has been widely used in pulse oximetry and also used in estimating respiration rate. It is well known that PPG contains respiration-induced intensity variation (RIIV) signal. However, the accuracy of finger PPG method has been controversial. We introduced a new technique of enhancing motion artifact by respiration. This was achieved simply by measuring PPG on the thorax. We examined the accuracy of these two PPG methods by comparing with two existing methods based on thoracic volume and nostril temperature changes. PPG sensing on finger tip, which is the most common site of measurement, produced 6.1 % error. On the other hand, our method of PPG sensing on the thorax achieved 0.4 % error which was a significant improvement. Finger PPG is sensitive to motion artifact and it is difficult to recover fully small respiratory signal buried in waveform dominated by absorption due to blood volume changes. Thorax PPG is poor to represent blood volumes changes since it contains substantial motion artifact due to respiration. Ironically, this inferior quality ensures higher accuracy in terms of respiration measurement. Extreme low-cost and small-sized LED/silicon detector and non-constrained reflection measurement provide a great candidate for respiration estimation in ubiquitous or personal health monitoring.

Pulse Detection from PPG Signal with Motion Artifact using Independent Component Analysis and Nonlinear Auto-correlation (독립 성분 분석과 비선형 자기상관을 이용한 동잡음이 포함된 PPG 신호에서의 맥박 검출)

  • Jeon, Hak-Jae;Kim, Jeong-Do;Lim, Seung-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.71-78
    • /
    • 2016
  • PPG signal measured by pulse oximeter can measure pulse and the oxygen saturation of arterial blood. But the PPG signal is distorted by finger movement or other movement in the body. To detect pulse from the PPG signal with motion artifact, we use band pass filter(BPF), Independent component analysis(ICA) and nonlinear autocorrelation(NAC). BPF is used to remove DC component and high frequency noise in the PPG signal with motion artifacts. ICA is used to separate pulse signal and motion artifact. However, pulse signal separated by ICA have no choice but to accompany signal distortion because pulse signal and motion artifact are not completely independent. So, we use nonlinear autocorrelation to emphasize the pure pulse signal from the distorted signal.

Study on Heart Rate Variability and PSD Analysis of PPG Data for Emotion Recognition (감정 인식을 위한 PPG 데이터의 심박변이도 및 PSD 분석)

  • Choi, Jin-young;Kim, Hyung-shin
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.103-112
    • /
    • 2018
  • In this paper, we propose a method of recognizing emotions using PPG sensor which measures blood flow according to emotion. From the existing PPG signal, we use a method of determining positive emotions and negative emotions in the frequency domain through PSD (Power Spectrum Density). Based on James R. Russell's two-dimensional prototype model, we classify emotions as joy, sadness, irritability, and calmness and examine their association with the magnitude of energy in the frequency domain. It is significant that this study used the same PPG sensor used in wearable devices to measure the top four kinds of emotions in the frequency domain through image experiments. Through the questionnaire, the accuracy, the immersion level according to the individual, the emotional change, and the biofeedback for the image were collected. The proposed method is expected to be various development such as commercial application service using PPG and mobile application prediction service by merging with context information of existing smart phone.

Implementation and evaluation of the sensor assessing pressure and photoplethysmogram (압력맥파 및 광전용적맥파 검출용 일체형 센서의 구현 및 평가)

  • Kim, Gi-Ryon;Kim, Gwang-Nyeon;Choi, Byeong-Cheol;Jeon, Gye-Rok;Ham, Ki-Young;Suh, Duk-Joon;Jung, Dong-Keun
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.106-111
    • /
    • 2006
  • Pulse sensors generally have characteristics that cause a analytical error by the interference of signals according to tiny motion of body and pressure applied to skin. To resolve this problem, we implemented the sensor that is capable of simultaneously measuring pressure and PPG(photoplethymogram) in a state attached to skin. Pressure and PPG was recorded at the finger and wrist respectively to evaluate the usefulness of the implemented sensor. Then, it was observed that the shape of PPG from sensor changed by pressure pushing down skin. Results of this study suggested that it is possible to monitor a degree of skin pressurization and to guarantee a reliable measurement by simultaneously measuring pressure and PPG using implemented integrated sensor when measuring PPG on the wrist or the finger.