• Title/Summary/Keyword: PPF/DEF

Search Result 3, Processing Time 0.017 seconds

The development of biodegradable resin for scaffold fabrication using micro-stereolithography and curing characteristics analysis of the resin (마이크로 광 조형기술을 이용한 인공지지체의 제작을 위한 생분해성 수지의 개발 및 경화 특성 파악)

  • Lee J.W.;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.147-148
    • /
    • 2006
  • A research on scaffold fabrication has been progressed in many research groups. However, the mechanical properties of existing biodegradable materials are still not satisfactory. But, PPF (poly (propylene fumarate)) has a good mechanical property in comparison to other biodegradable materials. Nevertheless, the viscosity of the synthesized PPF is too high to fabricate structures using micro-stereolithography. Therefore, the viscosity of the resin was made low by adding the diethyl fumarate and this material could be used in micro-stereolithography apparatus. Then, a photoinitiator was added for photo crosslinking of the DEF/PPF resin. 2.5D and 3D scaffolds were fabricated our system and curing characteristics of the resin were analyzed through the experiment.

  • PDF

Fabrication of Biodegradable Microstructures using Projection Microstereolithography Technology (프로젝션 마이크로광조형 기술을 이용한 생분해성 마이크로구조물 제작)

  • Choi, Jae-Won;Ha, Young-Myoung;Park, In-Baek;Ha, Chang-Sik;Lee, Seok-Hee
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1259-1264
    • /
    • 2007
  • Microstereolithography technology has potential capability for fabrication of 3D microstructures. It evolved from conventional SLA which is one of the RP processes. In a microstereolithography process, 3D microstructures can be easily fabricated by continuously stacking 2D layer which is photopolymerized using a liquid prepolymer. Combination between biocompatible/biodegradable photocurable prepolymer and 3D complex fabrication in microstereolithography makes broad application areas such as medical, pharmaceutic, and bio devices. In particular, a 3D microneedle for transdermal drug delivery and a scaffold for tissue engineering are fabricated using this technology. In this paper, the authors address development of microstereolithography system adapted to large surface and fabrication of various microstructures. In addition, to apply human body we suggest a biodegradable 3D microneedle and a scaffold using biodegradable photocurable prepolymer.

  • PDF