• Title/Summary/Keyword: PP(polypropylene) fiber

Search Result 223, Processing Time 0.017 seconds

An Experimental Study on Pumpability Characteristics of High Strength Concrete Mixed Polymix (폴리믹스 혼입 고강도 콘크리트의 펌프압송 성상에 관한 실험적 연구)

  • Lee, Joo-Ho;Moon, Hyung-Jae;Kim, Jeong-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.509-516
    • /
    • 2012
  • The aims of this research is to develop a fire resistant admixture to enhance high-pressured pumping of high-strength concrete (HSC) with a compressive strength of 60~80 MPa. Generally, the efficiency of HSC high-pressured pumping is dramatically reduced due to entanglement of short fibers added to prevent fire spalling. Therefore, the fire resistant admixture that can facilitate pumping of fire resistant HSC is urgently needed presently. The fire resistant HSC mix is comprised of Polypropylene fiber, Nylon fiber and Polymer powder. The test results showed that the slump-flow was improved by approximately 70% of the HSC without fire resistant admixture. However, the air void content was increased slightly due to the addition. The standard design compressive strength at 28-days was satisfied, while its flexural strength was similar to the concrete without the admixture. Since the flexural strength was 12~15% of its compressive strength, the general trend of flexural to compressive strength ratio in normal concrete was maintained. Even though its elastic modulus was decreased by adding the admixture, the study results showed that the concrete can be used for construction since all of the test results exceeded the code requirements.

Cold Storage, Packing and Salting Treatments Affecting the Quality Characteristics of Winter Chinese Cabbages (월동 배추의 저온 저장 방법별 포장 및 염장 처리에 따른 품질 특성)

  • Lee, Jung-Soo;Choi, Ji-Won;Chung, Dae-Sung;Lim, Chai-Il;Park, Su-Hyung;Lee, Youn-Suk;Lim, Sang-Chul;Chun, Chang-Hoo
    • Food Science and Preservation
    • /
    • v.14 no.1
    • /
    • pp.24-29
    • /
    • 2007
  • Quality changes in winter Chinese cabbages were evaluated during low temperature storage. Flesh and salt-treated Chinese cabbages were put into (a) polyethylene (PE) film sacks (size: $40cm{\times}60cm$, thickness: 0.03 mm, with four perforations each 8 mm in diameter), (b) plastic containers or (c) polypropylene (PP) nets and stored at $0^{\circ}C$. Also, Cabbages were also wrapped in newspapers and stored underground where the average temperature was $2.7^{\circ}C$. The weight loss rates of Chinese cabbages stored in PP nets and plastic containers were greater than those of cabbages stored with PE or wrapped in newspaper. Chinese cabbages wrapped in newspaper and stored underground needed much greater trimming compared to cabbages stored in other ways. The firmness and the soluble solid contents of Chinese cabbages were not affected by the various storage treatments. A better appearance was retained when Chinese cabbages were stored in PE film sacks. Chinese cabbages in PE film sacks stored at $0^{\circ}C$ showed delayed weight loss, less trimming loss, and less change in appearance. The quality changes in salted Chinese cabbages (desalting losses, pH changes, osmolarities, and crude fiber content) were not significantly different after the various treatments. No storage treatment was effective in maintaining a high quality of salted winter Chinese cabbage.

Evaluation of Propylenecarbonate/water Physical Absorbents and its Application in Membrane Contactors for CO2/CH4 Separation (CO2/CH4 분리를 위한 프로필렌카보네이트/물 흡수제 특성 평가 및 막접촉기의 적용)

  • Park, Ahrumi;Kim, Seong-Joong;Lee, Pyung Soo;Nam, Seung Eun;Park, You In
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.126-134
    • /
    • 2016
  • To produce renewable biomethane from biogas, the properties of physical absorbents such as water, methanol, 1-methyl-2-pyrrolidone (NMP), poly(ethylene glycol) dimethylether (PEGDME), and propylene carbonate (PC) were studied, and PC was applied to membrane contactor systems. Among physical absorbents, PC exhibited a high contact angle of $58.3^{\circ}$ on polypropylene surface, and a PC/water mixture (5 wt%) increased the contact angle to $90^{\circ}$. Furthermore, the PC/water mixture presented higher $CO_2$ absorption capacities (0.148-0.157 mmol/g) than that of water (0.121 mmol/g), demonstrating a good property as an absorbent for membrane contactors. Actual operations in membrane contactors using the PC/water mixture resulted in $CO_2$ removal of 98.0-97.8% with biomethane purities of 98.5-98.3%, presenting a strong potential for biogas treatment. However, the PC/water mixture yielded moderate improved in $CO_2$ removal and methane recovery, as compared with water in the membrane contactor operation. This is originated from insufficient desorption processes to reuse absorbent and low $CO_2$ flux of the PC/water absorbent. Thus, it is requiring optimizations of membrane contactor technology including development of absorbent and improvement of operation process.