• Title/Summary/Keyword: POWER

검색결과 91,179건 처리시간 0.079초

Simultaneous Information and Power Transfer Using Magnetic Resonance

  • Lee, Kisong;Cho, Dong-Ho
    • ETRI Journal
    • /
    • 제36권5호
    • /
    • pp.808-818
    • /
    • 2014
  • To deal with the major challenges of embedded sensor networks, we consider the use of magnetic fields as a means of reliably transferring both information and power to embedded sensors. We focus on a power allocation strategy for an orthogonal frequency-division multiplexing system to maximize the transferred power under the required information capacity and total available power constraints. First, we consider the case of a co-receiver, where information and power can be extracted from the same signal. In this case, we find an optimal power allocation (OPA) and provide the upper bound of achievable transferred power and capacity pairs. However, the exact calculation of the OPA is computationally complex. Thus, we propose a low-complexity power reallocation algorithm. For practical consideration, we consider the case of a separated receiver (where information and power are transferred separately through different resources) and propose two heuristic power allocation algorithms. Through simulations using the Agilent Advanced Design System and Ansoft High Frequency Structure Simulator, we validate the magnetic-inductive channel characteristic. In addition, we show the performances of the proposed algorithms by providing achievable ${\eta}$-C regions.

파랑에너지 해석 및 가용량 평가 연구 (Estimation of Wave Power in Korean Coastal Waters)

  • 김현주;최학선;김선경
    • 한국해양공학회지
    • /
    • 제12권1호
    • /
    • pp.107-112
    • /
    • 1998
  • The purpose of this study is to analyze the amount of available wave power and its characteristics related to the development of apractical system for ocean wave energy conversion in Korean coastal waters. The analysis method of wave power was established through comparison between theory and numerical simulation of deep sea wave by Inverse Fourier Transform with random phase method. Based on the results of comparison, wave power was estimated by use of data set from observed offshore and coastal waves and hindasted deep sea waves around the Korean peninsula. Annual mean wave power is estimated as about 1.8 ~ 7.0 kW for every metre of wave frontage at East sea, 1.5~5.3 kW at South sea and 1.0 ~ 4.1 kW at West sea, respectively. Mean wave power along deep sea front of coastal waters of Korea amounts to about 4.7 GW. Regional distribution and seasonal variation of wave power were discussed to develop practical utilization system of wave power of not so high grade of available wave power.

  • PDF

A Supercapacitor Remaining Energy Control Method for Smoothing a Fluctuating Renewable Energy Power

  • Lee, Wujong;Cha, Hanju
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.146-154
    • /
    • 2015
  • This paper proposes a control method for maintaining the energy level for a supercapacitor energy storage system coupled with a wind generator to stabilize wind power output. Although wind power is green and clean energy source, disadvantage of the renewable energy output power is fluctuation. In order to mitigate the fluctuating output power, supercapacitor energy storage system (SCESS) and wind power simulator is developed. A remaining energy supercapacitor (RESC) control is introduced and analyzed to smooth for short-term fluctuating power and maintain the supercapacitor voltage within the designed operating range in the steady as well as transient state. When the average and fluctuating component of power increases instantaneously, the RESC compensates fluctuating power and the variation of fluctuating power is reduced 100% to 30% at 5kW power. Furthermore, supercapacitor voltage is maintained within the operating voltage range and near 50% of total energy. Feasibility of SCESS with RESC control is verified through simulation and experiment.

시화조력발전소 방류 수문을 활용한 조류발전이 조력발전에 미치는 영향 (Effect of tidal current turbine using the discharge gate of Siwha tidal power plant on the tidal power generating)

  • 김영준;김용열;조용;고재명
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.236.2-236.2
    • /
    • 2010
  • The tidal current power is the power plant by installing the turbine or rotor where the tidal speed is fast. This system converting the horizontal movement to rotating energy. Tidal power turbine is needed for the dam to utilize the pressure difference. However, tidal current power using the only flow. The tidal current power was evaluated as the impact on the marine environment surrounding was less and the development of eco-friendly way. In this article, we calculated the effect of tidal current turbine on the tidal power generating by mean of CFD. With these calculated results, we checked the possibility of tidal current power using tidal power plant the discharge gate.

  • PDF

A Novel GPU Power Model for Accurate Smartphone Power Breakdown

  • Kim, Young Geun;Kim, Minyong;Kim, Jae Min;Sung, Minyoung;Chung, Sung Woo
    • ETRI Journal
    • /
    • 제37권1호
    • /
    • pp.157-164
    • /
    • 2015
  • As GPU power consumption in smartphones increases with more advanced graphic performance, it becomes essential to estimate GPU power consumption accurately. The conventional GPU power model assumes, simply, that a GPU consumes constant power when turned on; however, this is no longer true for recent smartphone GPUs. In this paper, we propose an accurate GPU power model for smartphones, considering newly adopted dynamic voltage and frequency scaling. For the proposed GPU power model, our evaluation results show that the error rate for system power estimation is as low as 2.9%, on average, and 4.6% in the worst case.

전력품질 개선을 위한 단상 전압제어형 능동전력필터 시스템에 관한 연구 (A Study on the Single Phase Voltage-Controlled Active Power Filter for Power Quality Improvement)

  • 손진근
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권5호
    • /
    • pp.238-245
    • /
    • 2003
  • In this paper, a single Phase voltage source voltage-controlled active power filter(APF) for power quality improvement was proposed. The proposed APF has the performance of harmonic suppression and unity power factor correction. The performance of harmonic suppression can be obtained by controlling the waveshape of the APF output voltage to be sine wave. And, unity power factor is controlled by the reactive power control loop of the APF output. Simulation and experimental results using diode rectifier showed that the voltage-controlled APF, unlike the current-controlled APF, can reduce the voltage harmonics as well as current harmonics. Also the results showed that the input dover factor and power quality were greatly improved.

부하역률 제약조건을 고려한 최적 급전 알고리즘 (The Optimal Power Flow Algorithm Considering Load Power Factor Limits)

  • 김광욱;조종만;김진오
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권9호
    • /
    • pp.494-499
    • /
    • 2004
  • This paper presents to compute the power economic dispatch, an optimal power flow (OPF) computation algorithm, considering the load power factor limits constraint in developed. Efficient reactive power planning enhances economic operation as well as system security. Accordingly, an adequate level of power factor limits for the load busesshould be evaluated for economic operation. In this paper, the ranges of acceptable load power factors are portrayed as bandwidths of load power factor expressed as a function of load level. The load power factor limits are included and described into the OPF's objective function. The method Proposed is applied to IEEE 26 bus system.

A BIFUNCTIONAL UTILITY CONNECTED PHOTOVOLTAIC SYSTEM WITH POWER FACTOR CORRECTION AND U.P.S. FACILITY

  • Kim. S.;Yoo, Gwonjong;Song, Jinsoo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1996년도 창립기념 전력전자학술발표회 논문집
    • /
    • pp.103-108
    • /
    • 1996
  • In this paper, a novel utility connected photovoltaic power generation system with unity power factor and uninterruptable power system facility and its control strategy are proposed. The proposed photovoltaic(PV) system is connected in parallel between utility and load. The PV system provides an uninterruptable voltage to load, a maximum power tracking to solar array, and power factor correction to the utility. The proposed system has the following advantages compared with the conventional utility connected PV system. 1. Harmonic elimination Function 2. Feeding the photovoltaic energy to the utility 3. Providing the uninterruptible power source along battery to the load In case that the photovoltaic array system is on the poor power generation, the battery and capacitor of the PV system are charged by three phase utility source and the inverter in the PV system only provides the reactive current to eliminate the harmonic current exited on the utility. In the normal operation mode, the PV system supplies active power to load and reactive power to utility in order to maintain the unity power factor and to regulate ac load voltage.

  • PDF

A Study on Photovoltaic/Wind/Diesel Hybrid Power System

  • Cho Jun-Seok;Gho Jae-Seok;Kim Kyung-Hyun;Choe Gyu-Ha;Kim Eung-Sang;Lee Chang-Sung
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.698-702
    • /
    • 2001
  • In this paper, to solve the defect of stand-alone type power system in a remote area, a hybrid power system with photovoltaic/wind/diesel generators is proposed. A hybrid power system has a power-balanced controller to equilibrate generation power with a given load demand and which is composed of common DC power system. To execute a power-balanced control, a hybrid power system is assumed that all of power generators have the characteristics of an equivalent current-source and load sharing control technique must be needed at the same time. So this paper describes the algorithm of interactive technique for design of a hybrid power system.

  • PDF

Experiences with Simulation Software for the Analysis of Inverter Power Sources in Arc Welding Applications

  • Fischer W.;Mecke H.;Czarnecki T.K.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.731-736
    • /
    • 2001
  • Nowadays various simulation tools are widely used for the design and the analysis of power electronic converters. From the engineering point of view it is rather difficult to parameterize power semiconductor device models without the knowledge of basic physical parameters. In recent years some data sheet driven behavioral models or so called 'wizard' tools have been introduced to solve this problem. In this contribution some experiences with some user-friendly power semiconductor models will be discussed. Using special simulation test circuits it is possible to get information on the static and dynamic behavior of the parameterized models before they are applied in more complex schemes. These results can be compared with data sheets or with measurements. The application of these models for power loss analysis of inverter type arc welding power sources will be described.

  • PDF