• 제목/요약/키워드: POWER

검색결과 91,179건 처리시간 0.08초

국내 전력수급 방안 (Electric Power Supply & Demand measures in korea)

  • 이기선
    • 기술사
    • /
    • 제44권2호
    • /
    • pp.29-33
    • /
    • 2011
  • In recent years, maximum electric power demand has been increasing steadily. But, Electric Power Supply & Demand problem is occurring due to lack of electric power reserve ratio caused by electric power peak. For this reason, I investigated the current status of the Electric Power Supply & Demand and established Electric Power Supply & Demand and established Electric Power Supply & Demand measures. I will expect that this paper will be contributed balanced and stable Electric Power Supply & Demand management.

  • PDF

Evaluation and Optimization of Power Electronic Converters using Advanced Computer Aided Engineering Techniques

  • Oza, Ritesh;Emadi, Ali
    • Journal of Power Electronics
    • /
    • 제3권2호
    • /
    • pp.69-80
    • /
    • 2003
  • Computer aided engineering (CAE) is a systematic approach to develop a better product/application with maximum possible options and minimum transition time. This paper presents a comprehensive feasibility analysis of various CAE techniques for evaluation and optimization of power electronic converters and systems. Different CAE methods for analysis, design, and performance improvement are classified. In addition, their advantages compared to the conventional workbench experimental methods are explained in detail and through examples.

HARMONICS OF INDUSTRIAL POWER ELECTRONIC CONVERTERS IN THE EREQUENCY RANGE UP TO 10 KHZ

  • Buttner, J.;Krechla, A.;Petzoldt, J.;Machost, D.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.598-602
    • /
    • 1998
  • This paper refers to fundamental investigations and simulations of conducted electromagnetic inference emissions produced by power electronic devices in a frequency range from 2 to 10 kHz. The emissions of different industrial power converters were measured and compared. The influence of different working conditions over the altitude of the EMI are represented. Simulations of the power converter system including the line impedance stabilisation network certify the measurements.

  • PDF

Design and Evaluation of PMU Performance Measurement and GPS Monitoring System for Power Grid Stabilization

  • Yang, Sung-Hoon;Lee, Chang Bok;Lee, Young Kyu;Lee, Jong Koo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권2호
    • /
    • pp.67-72
    • /
    • 2015
  • Power grid techniques are distributed over general power systems ranging from power stations to power transmission, power distribution, and users. To monitor and control the elements and performance of a power system in real time in the extensive area of power generation, power transmission, wide-area monitoring (WAM) and control techniques are required (Sattinger et al. 2007). Also, to efficiently operate a power grid, integrated techniques of information and communication technology are required for the application of communication network and relevant equipment, computing, and system control software. WAM should make a precise power grid measurement of more than once per cycle by time synchronization using GPS. By collecting the measurement values of a power grid from substations located at faraway regions through remote communication, the current status of the entire power grid system can be examined. However, for GPS that is used in general national industries, unexpected dangerous situations have occurred due to its deterioration and jamming. Currently, the power grid is based on a synchronization system using GPS. Thus, interruption of the time synchronization system of the power system due to the failure or abnormal condition of GPS would have enormous effects on each field such as economy, security, and the lives of the public due to the destruction of the synchronization system of the national power grid. Developed countries have an emergency substitute system in preparation for this abnormal situation of GPS. Therefore, in Korea, a system that is used to prepare for the interruption of GPS reception should also be established on a long-term basis; but prior to this, it is required that an evaluation technique for the time synchronization performance of a GPS receiver using an atomic clock within the power grid. In this study, a monitoring system of time synchronization based on GPS at a power grid was implemented, and the results were presented.

Analysis of Nigeria Research Reactor-1 Thermal Power Calibration Methods

  • Agbo, Sunday Arome;Ahmed, Yusuf Aminu;Ewa, Ita Okon Bassey;Jibrin, Yahaya
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.673-683
    • /
    • 2016
  • This paper analyzes the accuracy of the methods used in calibrating the thermal power of Nigeria Research Reactor-1 (NIRR-1), a low-power miniature neutron source reactor located at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria, Nigeria. The calibration was performed at three different power levels: low power (3.6 kW), half power (15 kW), and full power (30 kW). Two methods were used in the calibration, namely, slope and heat balance methods. The thermal power obtained by the heat balance method at low power, half power, and full power was $3.7{\pm}0.2kW$, $15.2{\pm}1.2kW$, and $30.7{\pm}2.5kW$, respectively. The thermal power obtained by the slope method at half power and full power was $15.8{\pm}0.7kW$ and $30.2{\pm}1.5kW$, respectively. It was observed that the slope method is more accurate with deviations of 4% and 5% for calibrations at half and full power, respectively, although the linear fit (slope method) on average temperature-rising rates during the thermal power calibration procedure at low power (3.6 kW) is not fitting. As such, the slope method of power calibration is not suitable at lower power for NIRR-1.

MPC-based Two-stage Rolling Power Dispatch Approach for Wind-integrated Power System

  • Zhai, Junyi;Zhou, Ming;Dong, Shengxiao;Li, Gengyin;Ren, Jianwen
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.648-658
    • /
    • 2018
  • Regarding the fact that wind power forecast accuracy is gradually improved as time is approaching, this paper proposes a two-stage rolling dispatch approach based on model predictive control (MPC), which contains an intra-day rolling optimal scheme and a real-time rolling base point tracing scheme. The scheduled output of the intra-day rolling scheme is set as the reference output, and the real-time rolling scheme is based on MPC which includes the leading rolling optimization and lagging feedback correction strategy. On the basis of the latest measured thermal unit output feedback, the closed-loop optimization is formed to correct the power deviation timely, making the unit output smoother, thus reducing the costs of power adjustment and promoting wind power accommodation. We adopt chance constraint to describe forecasts uncertainty. Then for reflecting the increasing prediction precision as well as the power dispatcher's rising expected satisfaction degree with reliable system operation, we set the confidence level of reserve constraints at different timescales as the incremental vector. The expectation of up/down reserve shortage is proposed to assess the adequacy of the upward/downward reserve. The studies executed on the modified IEEE RTS system demonstrate the effectiveness of the proposed approach.

배출권거래제도 실시가 CBP 시장에 미치는 영향분석 및 대응방안 수립연구 (A Study on the Impact Analysis of Introducing Emission Trading System on CBP Market and Policy Implications)

  • 김명수
    • 전기학회논문지
    • /
    • 제64권5호
    • /
    • pp.667-679
    • /
    • 2015
  • The bearer of the power sector's ETS compliance cost is power consumer for the following reasons. Firstly, power companies are constrained in establishing appropriate strategies to comply with ETS regulations due to the structural differences between the domestic power market and emission trading system. In other words, because power companies do not have a right to determine price and production of electricity, they have to compete with other companies under disadvantaged conditions in the emission trading market. Secondly, because ETS compliance cost is part of power production costs as it is also clearly written in the national greenhouse gas reduction road-map and the second energy supply plan, the cost should be included in power price following the power market operation rule. Thirdly, the most effective method to reduce carbon emissions in power sector is to reduce power demand, which is efficiently achieved through raising power price to a realistic level. Low power price in Korea is the major cause of rising power demand which is also the major cause of rising GHG emission. Therefore, power sector's ETS compliance cost should be included in power price to encourage power consumers' actions on reducing power consumption. Fourthly, when externality cost occurs in the process of delivering public services, usually beneficiary pay principle is applied to identify the cost bearer. Since electricity is one representative public good, the bearer of power sector's ETS compliance cost is power consumer.

석탄화력발전대비 LNG복합화력발전 환경성 및 경제성 비용분석에 관한 연구 (A Study on Environmental and Economic Cost Analysis of Coal Thermal Power Plant Comparing to LNG Combined Power Plant)

  • 김종원
    • 아태비즈니스연구
    • /
    • 제9권4호
    • /
    • pp.67-84
    • /
    • 2018
  • This study is about comparing coal thermal plant to LNG combined power plant in respect of environmental and economic cost analysis. In addition sensitive analysis of power cost and discount rate is conducted to compare the result of change in endogenous and exogenous variable. For environmental assessment, when they generate 10,669GWh yearly, coal thermal power plant emits sulfur oxides 959ton, nitrogen oxide 690ton, particulate matter 168ton and LNG combined power plant emits only nitrogen oxide 886ton respectively every year. Regarding economic cost analysis on both power plants during persisting period 30 years, coal thermal power plant is more cost effective 4,751 billion won than LNG combined taking in account the initial, operational, energy and environmental cost at 10,669GWh yearly in spite of only LNG combined power plant's energy cost higher than coal thermal. In case of sensitive analysis of power cost and discount rate, as 1% rise or drop in power cost, the total cost of coal thermal power plant increases or decreases 81 billion won and LNG combined 157 billion won up or down respectively. When discount rate 1% higher, the cost of coal thermal and LNG combined power plant decrease 498 billion won and 539 billion won for each. When discount rate 1% lower, the cost of both power plant increase 539 billion won and 837 billion won. With comparing each result of change in power cost and discount rate, as discount rate is weigher than power cost, which means most influential variable of power plan is discount rate one of exogenous variables not endogenous.

Impact of axial power distribution on thermal-hydraulic characteristics for thermionic reactor

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3910-3917
    • /
    • 2021
  • Reactor fuel's power distribution plays a vital role in designing the new generation thermionic Space Reactor Power Systems (SRPS). In this paper, the 1/12th SPACE-R's full reactor core was numerically analyzed with two kinds of different axial power distribution, to identify their impacts on thermal-hydraulic and thermoelectric characteristics. In the benchmark study, the maximum error between numerical results and existing data or design values ranged from 0.2 to 2.2%. Four main conclusions were obtained in the numerical analysis: a) The axial power distribution has less impact on coolant temperature. b) Axial power distribution influenced the emitter temperature distribution a lot, when the core power was cosine distributed, the maximum temperature of the emitter was 194 K higher than that of the uniform power distribution. c) Comparing to the cosine axial power distribution, the uniform axial power distribution would make the maximum temperature in each component of the reactor core much lower, reducing the requirements for core fuel material. d) Voltage and current distribution were similar to the axial electrode temperature distribution, and the axial power distribution has little effect on the output power.