• Title/Summary/Keyword: POWER

Search Result 90,791, Processing Time 0.073 seconds

DC-Link Active Power Filter for High-Power Single-Phase PWM Converters

  • Li, Hongbo;Zhang, Kai;Zhao, Hui
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.458-467
    • /
    • 2012
  • Single phase converters suffer from ripple power pulsating at twice the line frequency. The ripple power is usually absorbed by a bulky capacitor bank and/or a dedicative LC resonant link, resulting in a low power density and a high cost. An alternative solution is using a dc link active power filter (APF) to direct the pulsating power into another energy-storage component. The main dc link filter capacitor can then be reduced substantially. Based on a mainstream dc APF topology, this paper proposed a new control strategy incorporating both dual-loop control and repetitive control. The circuit parameter design is also re-examined from a control point of view. The proposed APF scheme has better control performance, and is more suited for high power applications since it works in CCM and with a low switching frequency.

Isolated Power Supply for Multiple Gate Drivers using Wireless Power Transfer System with Single-Antenna Receiver

  • Lim, Chang-Jong;Park, Shihong
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1382-1390
    • /
    • 2017
  • This paper presents a power supply for gate drivers, which uses a magnetic resonance wireless power transfer system. Unlike other methods where multiple antennas are used to supply power for the gate drivers, the proposed method uses a single antenna in an insulated receiver to make multiple mutually isolated power supplies. The power transmitted via single antenna is distributed to multiple power supplies for gate drivers through resonant capacitors connected in parallel that also block DC bias. This approach has many advantages over other methods, where each gate driver needs to be supplied with power using multiple receiver antennas. The proposed method will therefore lead to a reduction in production costs and circuit area. Because the proposed circuit uses a high resonance frequency of 6.78 MHz, it is possible to implement a transmitter and a receiver using a small-sized spiral printed-circuit-board-type antenna. This paper used a single phase-leg circuit configuration to experimentally verify the performance characteristics of the proposed method.

Improved Direct Power Control of Shunt Active Power Filter with Minimum Reactive Power Variation and Minimum Apparent Power Variation Approaches

  • Trivedi, Tapankumar;Jadeja, Rajendrasinh;Bhatt, Praghnesh
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1124-1136
    • /
    • 2017
  • Direct Power Control technique has become popular in the grid connected Voltage Source Converter (VSC) applications due to its simplicity, direct voltage vector selection and improved dynamic performance. In this paper, a direct method to determine the effect of voltage vector on the instantaneous active and reactive power variations is developed. An alternative Look Up Table is proposed which minimizes the commutations in the converter and results in minimum reactive power variation. The application of suggested table is established for Shunt Active Power Filter (SAPF) application. The Predictive Direct Power Control method, which minimizes apparent power variation, is further investigated to reduce commutations in converters. Both the methods are validated using 2 kVA laboratory prototype of Shunt Active Power Filters (SAPF).

A Study on Battery Charger Reliability Improvement of Nuclear Power Plants DC Distribution System (원자력발전소 직류 전력계통의 충전기 신뢰도 향상방안 연구)

  • Lim, Hyuk-Soon;Kim, Doo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.24-28
    • /
    • 2010
  • The nuclear power Plant onsite AC electrical power sources are required to supply power to the engineering safety facility buses if the offsite power source is lost. Typically, Diesel Generators are used as the onsite power source. The 125 VAC buses are part of the onsite Class 1E AC and DC electrical power distribution system. The DC power distribution system ensure the availability of DC electrical power for system required to shutdown the reactor and maintain it in a safety condition after an anticipated operational occurrence or a postulated Design Base Accident. Recently, onsite DC power supply system trip occurs the loss of system function. To obtain the performance such as reliability and availability, we analyzed the cause of battery charger trip and described the improvement of DC power supply system reliability. Finally, we provide reliability performance criteria of charger in order to ensure the probabilistic goals for the safety of the nuclear power plants.

Evaluation of Interruption Costs for Commercial Customers

  • Choi Sang-Bong;Nam Kee-Young;Kim Dae-Kyeong;Jeong Seong-Hwan;Lee Jae-Duck;Rhoo Hee-Suk
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.1
    • /
    • pp.56-61
    • /
    • 2005
  • This paper presents an evaluation of the interruption costs for commercial customers in Korea using customer survey methodology. When various research results are examined, the evaluation of direct interruption costs becomes much more simplified. Especially, in the case of commercial customers, it is known that the evaluation of direct interruption costs is more useful. Accordingly, this paper selected the customer survey method to evaluate the interruption costs for commercial customers in Korea considering interruption and customer characteristics.

Development of the precision AC/DC power measuring system on the basis of thermal converters (열전형변환기를 사용한 정밀 교류직류전력측정장치 개발)

  • 박영태;장석명
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.9-13
    • /
    • 1996
  • The high precision of electrical power and energy measurements with wide range of frequency and power factor can be achieved by using the thermo-electrical power comparators. The paper describes the development of a precision power measuring system by using a ac/dc power comparator for measurement of power. Based on a thermal principle, the instrument performs ac-dc transfer for ac power measurements in the range of currents from 0 to 5 $A_{ms}$ , voltages from 0 to 240 $V_{ms}$ , power factors from 0 to 1 and frequencies from 0 to 1000 Hz. Two thermal converters with two heater are used in the functional element of the comparators. The ac-dc transfer accuracy is better than 20 ppm at unity power factor and better than 50 ppm at 0.5 power factor. (author). 8 refs., 5 figs., 3 tabs.

  • PDF

Control of PCC Voltage Variation by Reactive Power Compensation of Distributed Source (분산전원의 무효전력 보상을 통한 PCC 전압 변동 제어)

  • Han, Sanghun;Lim, Jong-ung;Han, Yu;Cho, Younghoon;Choe, Gyu-ha
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.180-181
    • /
    • 2017
  • Recently as distributed source has increased, the distribution system has changed from unidirectional power flow to bi-directional power flow. This power flow causes the PCC voltage variation, which can adversely affect voltage sensitive loads. In this paper, the relation between the active power, reactive power and PCC voltage of the distributed source is analyzed, and the PCC voltage control scheme by reactive power compensation is proposed in the distributed source itself. In addition, limitations and conditions according to the standard for interconnecting distributed resources are specified and verified through simulation.

  • PDF

Impedance measurement and analysis of overhead medium voltage power lines for broad band power line communication (BPLC) ($1{\sim}30MHz$ 광대역 전력선 통신을 위한 고압 배전선의 임피던스 특성 측정 및 해석)

  • Park, Young-Jin;Lee, Jae-Jo;Kim, Kwan-Ho;Lee, Won-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2345-2347
    • /
    • 2005
  • In this paper, impedance characteristics of overhead medium-voltage (MV) power lines is reported for power line communication (PLC) over an MV power line network. For analysis, a two-port equivalent network model of MV power lines is derived. By applying the transmission line theory, reflection behavior and impedance of power lines are investigated. For verification, impedance of power lines is measured at a test field for an MV PLC. The results show that impedance of MV power lines is between $200{\Omega}$ and $300{\Omega}$ and converges to a half of their characteristic impedance.

  • PDF

Survey on the Standby Power Consumption of Home Electronics (가전기기의 대기전력 실태조사연구)

  • Kim N.K.;Kim S.C.;Kim H.W.;Seo K.S.;Kim E.D.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1531-1533
    • /
    • 2004
  • Standby power is progressively important in the developed countries including Korea. The status of standby power of korean home electronic wares has been unknown. In this paper, standby power consumption of home electronics in Korea has been firstly surveyed and reported. Over 800 pieces of electrical equipments that consume standby power in 53 households were investigated. The average standby power per equipment and total standby power per household were 3.66W and 57.0W, respectively. It was revealed that Audio systems and network appliances such as xDSL modem, set-top box generally consume high standby power.

  • PDF

Maximum Power Analysis Simulator Development & Lighting Installation Control Simulation (최대전력 분석시뮬레이터 개발 및 조명설비 제어 시뮬레이션)

  • Chang, Hong-Soon;Han, Young-Sub;Soe, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.95-99
    • /
    • 2013
  • The maximum power analysis simulator took advantage of the facilities and power consumption reduction simulator test scenario development and testing of improvement in the scenario. As a maximum demand power controller, Maximum power analysis simulator performs control and disperasion of maximum demand power by calculating base power, load forecast, and present power which are based on signal of watt-hour meter to keep the electricity under the target. In addition, various algorithms to select appropriate control methode on each of the light installations through the peak demand power is configured to management. The simulation shows the success of control power for the specified target controlled by five sequential lighting installations.