• 제목/요약/키워드: POS System

검색결과 178건 처리시간 0.024초

Monitoring and Analysis of Galileo Services Performance using GalTeC

  • Su, H.;Ehret, W.;Blomenhofer, H.;Blomenhofer, E.
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.235-240
    • /
    • 2006
  • The paper will give an overview of the mission of GalTeC and then concentrate on two main aspects. The first more detailed aspect, is the analysis of the key performance parameters for the Galileo system services and presenting a technical overview of methods and algorithms used. The second more detailed aspect, is the service volume prediction including service dimensioning using the Prediction tool. In order to monitor and validate the Galileo SIS performance for Open Service (OS) and Safety Of Life services (SOL) regarding the key performance parameters, different analyses in the SIS domain and User domain are considered. In the SIS domain, the validation of Signal-in-Space Accuracy SISA and Signal-in-Space Monitoring Accuracy SISMA is performed. For this purpose first of all an independent OD&TS and Integrity determination and processing software is developed to generate the key reference performance parameters named as SISRE (Signal In Space Reference Errors) and related over-bounding statistical information SISRA (Signal In Space Reference Accuracy) based on raw measurements from independent sites (e.g. IGS), Galileo Ground Sensor Stations (GSS) or an own regional monitoring network. Secondly, the differences of orbits and satellite clock corrections between Galileo broadcast ephemeris and the precise reference ephemeris generated by GalTeC will also be compared to check the SIS accuracy. Thirdly, in the user domain, SIS based navigation solution PVT on reference sites using Galileo broadcast ephemeris and the precise ephemeris generated by GalTeC are also used to check key performance parameters. In order to demonstrate the GalTeC performance and the methods mentioned above, the paper presents an initial test result using GPS raw data and GPS broadcast ephemeris. In the tests, some Galileo typical performance parameters are used for GPS system. For example, the maximum URA for one day for one GPS satellite from GPS broadcast ephemeris is used as substitution of SISA to check GPS ephemeris accuracy. Using GalTeC OD&TS and GPS raw data from IGS reference sites, a 10 cm-level of precise orbit determination can be reached. Based on these precise GPS orbits from GalTeC, monitoring and validation of GPS performance can be achieved with a high confidence level. It can be concluded that one of the GalTeC missions is to provide the capability to assess Galileo and general GNSS performance and prediction methods based on a regional and global monitoring networks. Some capability, of which first results are shown in the paper, will be demonstrated further during the planned Galileo IOV phase, the Full Galileo constellation phase and for the different services particularly the Open Services and the Safety Of Life services based on the Galileo Integrity concept.

  • PDF

자질 선택 기법을 이용한 한국어 화행 결정 (Decision of the Korean Speech Act using Feature Selection Method)

  • 김경선;서정연
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권3_4호
    • /
    • pp.278-284
    • /
    • 2003
  • 화행(speech act)이란 화자의 발화를 통해 나타나는 화자의 의도를 가르키며 자연어로 된 발화를 이해하고 이에 대한 응답을 생성하기 위해 중요한 요소이다. 본 논문에서는 한국어 화행 결정의 성능을 높이기 위해 두 단계 방법을 제안한다. 첫 번째 단계는 형태소 분석결과만을 이용하여 추출된 문장자질과 이전 화행을 이용하여 추출된 문맥자질 중 정보량이 높은 자질을 선택하는 단계이다. 이 단계에서는 형태소 분석 시스템을 사용하여 전체 자질을 구성하고 문서분류 분야의 자질 선택에서 높은 성능을 보인 카이제곱 통계량을 이용하여 효과적인 자질 선택한다. 두 번째 단계는 선택된 자질과 신경망을 이용하여 화행을 분석하는 단계이다. 본 논문에서 제시한 방법은 형태소 분석 결과만을 이용하여 자동적으로 화행을 결정할 수 있는 가능성을 제시하였으며 효과적인 자질 선택을 통해 자질의 수를 감소시키고 정보량이 높은 자질을 사용하여 속도와 성능을 향상 시켰다 본 논문은 제안된 시스템을 실제 영역에서 수집되어 전사된 10,285개의 발화와 17개의 화행으로 이루어진 대화 코퍼스에 대해 실험하였다. 본 논문은 이 코퍼스에서 8,349개 발화를 학습 코퍼스로 사용하여, 실험 코퍼스의 1,936개 발화에 대해 1,709개에 대해 정확한 화행을 제시하여, 88.3%의 정확도를 보였다. 이는 자질 선택을 하지 않았을 때 보다 약 8%가 증가된 결과이다.

한국어 자연어생성에 적합한 사전훈련 언어모델 특성 연구 (A Study of Pre-trained Language Models for Korean Language Generation)

  • 송민채;신경식
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.309-328
    • /
    • 2022
  • 본 연구는 자연어처리의 분석목적과 추론데이터 성격에 적합한 한국어 사전훈련 언어모델의 특성을 실증분석했다. 이를 위해 자연어생성이 가능한 대표적 사전훈련 언어모델인 BART와 GPT 모델을 실험에 사용했다. 구체적으로 한국어 텍스트를 BART와 GPT 모델에 학습한 사전훈련 언어모델을 사용해 문서요약 생성 성능을 비교했다. 다음으로 추론데이터의 특성에 따라 언어모델의 성능이 어떻게 달라지는지 확인하기 위해 6가지 정보전달성과 4가지 창작물 유형의 한국어 텍스트 문서에 적용했다. 그 결과, 모든 문서유형에서 인코더와 디코더가 모두 있는 BART의 구조가 디코더만 있는 GPT 모델보다 더 높은 성능을 보였다. 추론데이터의 특성이 사전훈련 언어모델의 성능에 미치는 영향을 살펴본 결과, KoGPT는 데이터의 길이에 성능이 비례한 것으로 나타났다. 그러나 길이가 가장 긴 문서에 대해서도 KoGPT보다 KoBART의 성능이 높아 다운스트림 태스크 목적에 맞는 사전훈련 모델의 구조가 자연어생성 성능에 가장 크게 영향을 미치는 요소인 것으로 나타났다. 추가적으로 본 연구에서는 정보전달성과 창작물로 문서의 특징을 구분한 것 외에 품사의 비중으로 문서의 특징을 파악해 사전훈련 언어모델의 성능을 비교했다. 그 결과, KoBART는 어미와 형용사/부사, 동사의 비중이 높을수록 성능이 떨어진 반면 명사의 비중이 클수록 성능이 좋았다. 반면 KoGPT는 KoBART에 비해 품사의 비중과 상관도가 낮았다. 이는 동일한 사전훈련 언어모델이라도 추론데이터의 특성에 따라 자연어생성 성능이 달라지기 때문에 다운스트림 태스크에 사전훈련 언어모델 적용 시 미세조정 외에 추론데이터의 특성에 대한 고려가 중요함을 의미한다. 향후 어순 등 분석을 통해 추론데이터의 특성을 파악하고, 이것이 한국어 생성에 미치는 영향을 분석한다면 한국어 특성에 적합한 언어모델이나 자연어생성 성능 지표 개발이 가능할 것이다.

품사별 출현 빈도를 활용한 코로나19 관련 한국어 가짜뉴스 탐지 (COVID-19-related Korean Fake News Detection Using Occurrence Frequencies of Parts of Speech)

  • 김지혁;안현철
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.267-283
    • /
    • 2023
  • 2019년 12월부터 현재까지 지속되고 있는 코로나19 팬데믹으로 인해 대중들은 감염병 대응을 위한 정보를 필요로 하게 되었다. 하지만 소셜미디어에서 유포되는 코로나19 관련 가짜뉴스로 인해 대중들의 건강이 심각하게 위협받고 있다. 특히 코로나19와 관련된 가짜뉴스가 유사한 내용으로 대량 유포될 경우 사실인지 거짓인지 진위를 가리기 위한 검증에 소요되는 시간이 길어지게 되어 우리 사회의 전반에 심각한 위협이 될 수 있다. 이에 학계에서는 신속하게 코로나19 관련 가짜뉴스를 탐지할 수 있는 지능형 모델에 대한 연구를 활발하게 수행해 오고 있으나, 대부분의 기존 연구에 사용된 데이터는 영문으로 구성되어 있어 한국어 가짜뉴스 탐지에 대한 연구는 매우 드문 실정이다. 이에 본 연구에서는 소셜 미디어 상에서 유포되는 한국어로 작성된 코로나19 관련 가짜뉴스 데이터를 직접 수집하고, 이를 기반으로 한 지능형 가짜뉴스 탐지 모델을 제안한다. 본 연구의 제안모델은 언어학적 특성 중 하나인 품사별 빈도 정보를 추가적으로 활용하여, 기존 연구에서 주로 사용되어 온 문서 임베딩 기법인 Doc2Vec 기반 가짜뉴스 탐지 모델의 예측 성능을 제고하고자 하였다. 실증분석 결과, 제안 모델이 비교 모델에 비해 Recall 및 F1 점수가 높아져 코로나19 관련 한국어 가짜뉴스를 보다 정확하게 판별함을 확인하였다.

석류 종자유로부터 얻어진 Conjugated Linolenic Acid를 함유한 기능성 고체지의 효소적 합성 및 이화학적 특성 연구 (Enzymatic synthesis of structured lipids containing conjugated linolenic acids extracted from pomegranate seed oil and their physicochemical characteristics)

  • 이구;신정아;이기택
    • 농업과학연구
    • /
    • 제39권3호
    • /
    • pp.395-405
    • /
    • 2012
  • 기능성 지방산인 CLnA를 다량 함유하고 있는 석류 종자유로부터 합성된 가수분해물과 고체지인 팜 스테아린을 기질로 사용하여 Lipozyme TL IM 효소를 촉매로 하여, 기능성 고체지들을 무용매 반응(NH-SL)과 n-hexane 반응(H-SL)조건에서 합성하였다. 합성은 기질 비율 1:6 몰(w/w, PS:HPSO)로, 각 12, 24, 72 hr 동안 반응하여 이루어졌다. 합성 후 반응물은 탈산과정을 수행한 후 각 기능성 고체지들의 이화학적 특성을 살펴보았다. 총 지방산 조성분석결과, 반응시간이 증가함에 따라 NH-SL에서 CLnA의 함량은 34.38%, 37.68%, 40.63%의 함량으로 유의적 차이를 보이며 증가하는 경향을 나타내었다(p<0.05). H-SL에서 CLnA의 함량은 36.81%, 41.19%, 45.83%으로 유의적 차이를 보이며 증가하였다(p<0.05). TAG 조성분석 결과, 기능성 재구성지질들(NH-SL, H-SL)에는 LnLnLn(PN=36), LnLnL(PN=38), LnLL과 LnLnP(PN=40), LLL(PN=42), PLP(PN=46), OOLn과 PLO, POP, PPS(PN=48), LOO, POS(PN=50) 등으로 구성되어 있었다. 반응시간이 길어짐에 따라 NH-SL의 경우 LnLnLn의 함량이 1.63%에서 11.54%로 증가하였고, H-SL의 경우 5.89%에서 18.45%로 증가하였다. 또한 주된 TAG 조성인 LnLnP의 경우 각각 23.15~33.77%(NH-SL)와 28.76~36.44%(H-SL)으로 높은 함량을 나타내었다. 합성한 석류종자유 가수분해물의 산가는 200.46이었으며, 합성 후 탈산한 기능성 고체지들의 산가는 1.05~1.41로 낮았다. 또한 불포화도를 나타내는 요오드가 측정결과, 무용매 반응과 용매 반응 모두에서 반응시간이 길어짐에 따라 요오드가가 점차로 증가하였다. 이러한 결과는 반응시간이 길어짐에 따라 CLnA의 함량이 높아졌기 때문에 IV가 점차로 높아지는 결과를 얻은 것으로 사료된다. 기능성 고체지들의 total tocopherol 함량 측정결과, 반응시간이 길어짐에 따라 NH-SL의 경우 3.37~2.13 mg/100 g으로 다소 감소하였으며, H-SL의 경우 3.89~2.51 mg/100 g으로 감소하는 경향을 나타내었다. 또한, 기능성 고체지들의 SFI 측정결과, H-SL의 경우 $10^{\circ}C$에서 NH-SL보다 고체지 함량이 낮았으며, $25^{\circ}C$에서는 거의 액체 상태를 유지하였다. 이는 융점이 낮으며 불포화지방산인 CLnA의 함량이 비교적 높았기 때문인 것으로 사료된다. 따라서 마가린과 같은 적절한 spreadability를 부여하기 위해서는 무용매 반응(NH-SL)에서 12 hr과 24 hr 반응을 통하여 생성된 기능성 고체지들이 적합할 것으로 예측되었다. 72 hr 동안 반응하여 생성된 기능성 고체지들(NH-SL, H-SL)의 경우, $3.86{\AA}$에서 낮은 강도를 나타내어, 주로 ${\beta}$'의 결정형을 이루고 있음을 확인하였다.

새로운 결제서비스의 성공요인: 다중사례연구 (Critical Success Factor of Noble Payment System: Multiple Case Studies)

  • 박아름;이경전
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.59-87
    • /
    • 2014
  • 결제서비스에 대한 기존의 연구는 결제서비스의 채택요인 또는 지속적인 사용에 영향을 미치는 요인 등 행동이론을 중심으로 진행되어 왔다. 이러한 요인들이 미치는 영향에 대한 결과는 결제서비스의 종류에 따라 또는 연구 지역에 따라 상이하게 나타나고 있다. 본 연구는 결제 서비스의 종류나 문화등의 변수에 관계없이 새로운 결제 서비스가 성공할 수 있는 일반적인 요인이 무엇인지에 대한 의문에서 시작하게 되었다. 기존 연구에서 중요한 영향을 미친다고 제시한 채택요인들은 실제 결제사례의 결과에 비추어 보면 기존 연구에서 주장한 바와 일치하지 않는 경우를 볼 수 있다. 이러한 이론과 현실사이의 괴리를 발견하고 새로운 결제서비스가 성공하기 위한 근본적이고 결정적인 요인이 무엇인지에 대해 제시하고 사례연구를 통해 가설을 입증하고자 하는 것이 본 연구의 목적이다. 따라서 본 연구는 새로운 결제서비스가 성공하기 위해서는 기존 결제서비스의 비고객에게 이들이 결제할 수 있는 수단을 제공함으로써 새로운 결제 시장을 창출해야 함을 주장한다. 이를 위해 성공한 결제사례인 신용카드, 휴대폰 소액결제, PayPal, Square을 채택하였으며, 기존 결제서비스의 비고객을 3개의 계층으로 분류하여 분석하였다. 그리고 새로운 결제서비스가 어떠한 계층을 타겟으로 하였으며 이들에게 어떠한 결제수단을 제공하여 새로운 시장을 창출하였는지 제시한다. 사례 분석 결과, 성공 사례 모두 본 연구의 가설을 지지하는 것으로 나타났다. 따라서 새로운 결제서비스는 결국 기존의 결제수단으로 거래를 할 수 없었던 이들이 결제를 할 수 있도록 함으로써 성공할 수 있다는 가설을 입증하였다. 모바일 결제서비스가 아직 대중화되지 못한 원인을 본 가설에 비추어 분석해 보면 보면, 기존의 결제 인프라를 이용할 수 있는 바코드, QR코드 기반의 모바일 결제 서비스뿐만 아니라 NFC, BLE, 음파 등의 새로운 기술이 적용된 모바일 결제 서비스가 출시되는 등 새로운 시도가 계속되고 있다. 또한 모바일 월렛은 사용자들이 소지하고 있는 카드정보를 스마트폰에 저장하여 지갑 없이도 결제가 가능하며, 쿠폰 제공, 적립카드 관리, 신분증을 저장하는 등의 다양한 부가적인 기능을 제공하고 있어 성공할 것이라는 전망이 대두되고 있다. 하지만 이러한 서비스들은 본 연구 관점에서 보자면 기존 결제서비스의 비고객이(기존 결제수단을 이용할 수 없었던 사용자) 거래할 수 있는 새로운 결제 수단을 제공해 주지 못하고 있기 때문에 결국 초기사용자에게만 채택될 뿐 대중화되는데 한계가 있을 것으로 예상된다. 반면, 새로운 모바일 결제서비스의 성공사례 중 하나인 PaybyPhone은 기존 코인주차 결제서비스의 비고객인 현금 미소지 고객에게 스마트폰을 이용한 새로운 결제수단을 제공함으로써 새로운 주차 결제 시장을 창출하였으며 현재 미국뿐만 아니라 유럽시장까지 진출하는 등 급성장하고 있다. 결론적으로, 많은 이해관계자들이 모바일 결제시장을 선점하기 위해 다양한 형태의 모바일 결제 서비스를 출시하고 있지만 캐즘을 뛰어넘어 주류 시장에 성공적으로 정착할 수 있느냐는 결국 기존 결제서비스의 비고객군에게 그들이 필요로 하는 새로운 결제수단을 제공하는지의 여부에 달려있다고 볼 수 있다. 따라서 모바일 결제 서비스의 기획자나 매니저들은 서비스 기획 시 기존 결제서비스의 비고객군은 누구인가? 그들은 어떠한 결제수단을 원하는가?를 먼저 고려해야 한다. 본 연구는 새로운 결제서비스가 성공하는데 미치는 요인에 대한 가설을 검증하기 위해 4개의 성공사례를 선택하였으며 각 사례에 동일한 가설을 검증하는 '반복연구논리'를 적용하였다. 본 가설을 더욱 공고히 하기 위해 사례연구방법론에서 제시하고 있는 경쟁가설을 포함한 후속 사례연구가 진행되어야 할 것이다.

RFM 기반 SOM을 이용한 매장관리 전략 도출 (Strategy for Store Management Using SOM Based on RFM)

  • 정윤정;최일영;김재경;최주철
    • 지능정보연구
    • /
    • 제21권2호
    • /
    • pp.93-112
    • /
    • 2015
  • 소비자의 소비성향이 필요 품목을 중심으로 근거리에서 구매하는 근린형으로 변화함에 기존의 소매점은 식료품, 생활용품을 위주로 제공하는 슈퍼마켓, 하이퍼마켓 또는 편의점으로 진화하고 있다. 따라서 소매점이 한정된 공간에서 효율적으로 공간을 활용하고 매출을 증대하기 위해서는 소비자의 구매욕을 충족시킬 수 있는 상품배치와 적정한 재고수준을 유지하는 것이 매우 중요하다. 본 연구에서는 소매점의 판매 상품에 대하여 RFM 기반 SOM 군집화를 하여 효율적으로 매장을 관리할 수 있는 상품 배치전략 및 재고전략을 제안하였다. 실제 M마트의 판매데이터를 이용하여 RFM모델을 상품에 적용한 후, 기존 문헌 연구뿐만 아니라 해석 가능성, 응용 가능성 등을 고려하여 3X3 총 9개의 군집으로 분류하여 분석한 결과, 주요 군집으로 R값, F값, M값이 모두 높은 군집, R값, F값, M값 모두 낮은 군집, R값만 높은 군집, F값만 높은 군집이 도출되었다. 본 논문에서는 다른 군집과 비교시 R값, F값, M값이 차이를 보이는 주요 4개의 군집의 상품 배치 및 재고 전략을 제시하였다. R값, F값, M값이 모두 높은 군집의 상품은 소비자 동선을 늘림으로써 상품 노출을 확대시킬 수 있는 장소에 배치하여야 할 뿐만 아니라 높은 수준의 재고를 보유할 필요가 있다. 반면에 R값, F값, M값이 모두 낮은 군집의 상품은 가시성이 낮은 곳에 배치하고 최소한의 안전재고만 보유할 필요가 있다. 또한 R값이 높은 군집은 신상품으로 매장 입구에 배치하여 상품의 판매를 유도할 필요가 있다. 그리고 F값만 높은 군집의 경우, R값과 M값이 평균 값 보다 작은 상품들의 군집이므로 최근에는 판매가 저조하며 빈도 수에 비해 총 판매액이 낮다는 것을 유추할 수 있다. 따라서 현재보다 과거에 많이 판매된 저가의 상품군집으로 재고 수준을 점차 감소시킬 필요가 있다. 본 연구에서 제시한 방법은 POS 시스템의 보유한 소매점에서 상품배치 및 재고관리 방법으로 활용되어 매장의 수익성 증대에 기여할 수 있을 것으로 기대된다.

텍스트 마이닝을 이용한 감정 유발 요인 'Emotion Trigger'에 관한 연구 (A Study of 'Emotion Trigger' by Text Mining Techniques)

  • 안주영;배정환;한남기;송민
    • 지능정보연구
    • /
    • 제21권2호
    • /
    • pp.69-92
    • /
    • 2015
  • 최근 소셜 미디어의 사용이 폭발적으로 증가함에 따라 이용자가 직접 생성하는 방대한 데이터를 분석하기 위한 다양한 텍스트 마이닝(text mining) 기법들에 대한 연구가 활발히 이루어지고 있다. 이에 따라 텍스트 분석을 위한 알고리듬(algorithm)의 정확도와 수준 역시 높아지고 있으나, 특히 감성 분석(sentimental analysis)의 영역에서 언어의 문법적 요소만을 적용하는데 그쳐 화용론적 의미론적 요소를 고려하지 못한다는 한계를 지닌다. 본 연구는 이러한 한계를 보완하기 위해 기존의 알고리듬 보다 의미 자질을 폭 넓게 고려할 수 있는 Word2Vec 기법을 적용하였다. 또한 한국어 품사 중 형용사를 감정을 표현하는 '감정어휘'로 분류하고, Word2Vec 모델을 통해 추출된 감정어휘의 연관어 중 명사를 해당 감정을 유발하는 요인이라고 정의하여 이 전체 과정을 'Emotion Trigger'라 명명하였다. 본 연구는 사례 연구(case study)로 사회적 이슈가 된 세 직업군(교수, 검사, 의사)의 특정 사건들을 연구 대상으로 선정하고, 이 사건들에 대한 대중들의 인식에 대해 분석하고자 한다. 특정 사건들에 대한 일반 여론과 직접적으로 표출된 개인 의견 모두를 고려하기 위하여 뉴스(news), 블로그(blog), 트위터(twitter)를 데이터 수집 대상으로 선정하였고, 수집된 데이터는 유의미한 연구 결과를 보여줄 수 있을 정도로 그 규모가 크며, 추후 다양한 연구가 가능한 시계열(time series) 데이터이다. 본 연구의 의의는 키워드(keyword)간의 관계를 밝힘에 있어, 기존 감성 분석의 한계를 극복하기 위해 Word2Vec 기법을 적용하여 의미론적 요소를 결합했다는 점이다. 그 과정에서 감정을 유발하는 Emotion Trigger를 찾아낼 수 있었으며, 이는 사회적 이슈에 대한 일반 대중의 반응을 파악하고, 그 원인을 찾아 사회적 문제를 해결하는데 도움이 될 수 있을 것이다.