• 제목/요약/키워드: POOL

검색결과 2,543건 처리시간 0.031초

The Effect of Coolant Boiling on the Molten Metal Pool Heat Transfer with Local Solidification

  • Cho, Jea-Seon;Kune Y. Suh;Chung, Chang-Hyun;Park, Rae-Joon;Kim, Sang-Baik
    • Nuclear Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.34-45
    • /
    • 2000
  • This study is concerned with the experimental test and numerical analysis of the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. In the test, the metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. Experiments were performed by changing the test section bottom surface temperature of the metal layer and the coolant injection rate. The two-phase boiling coolant experimental results are compared against the dry test data without coolant or solidification of the molten metal pool, and against the crust formation experiment with subcooled coolant. Also, a numerical analysis is performed to check on the measured data. The numerical program is developed using the enthalpy method, the finite volume method and the SIMPLER algorithm. The experimental results of the heat transfer show general agreement with the calculated values. The present empirical test and numerical results of the heat transfer on the molten metal pool are apparently higher than those without coolant boiling. This is probably because this experiment was performed in concurrence of solidification in the molten metal pool and the rapid boiling of the coolant. The other experiments were performed without coolant boiling and the correlation was developed for the pure molten metal without phase change.

  • PDF

LOSS-OF-POOL-WATER 사고시 연구용 원자로 MAPLE-X10 시설에서의 감마 방사선장 해석 (Analysis of Gamma Radiation Fields in the MAPLE-X10 Facility Associated with Loss-of-Pool-Water Accident Conditions)

  • Kim, Kyo-Youn;Ha, Chung-Woo;I.C. Gauld
    • Nuclear Engineering and Technology
    • /
    • 제21권2호
    • /
    • pp.63-72
    • /
    • 1989
  • 연구용 원자로 MAPLE-X10 시설의 안전성을 평가하기 위하여 원자로 pool 및 보조 pool로부터 물의 상실이 가정되었을 때 시설에 대한 감마 방사선장을 해석하였다. 차폐 해석에 고려된 4개의 photon 선원항은 ORIGEN-S코드를 이용하여 계산하였다. 또한, pool물 상실 사고 조건하에서 원자로 pool 및 보조 pool에서의 감마 선량율은 QAD-CG코드를, 그리고 pool외부의 방사선장은 입체각 외부에서의 산란 photon 선량율 계산에도 적합한 MCNP 코드를 이용하여 평가하였다.

  • PDF

전산유체해석을 이용한 연구용원자로 수조수관리계통 열교환기 설계 및 수조수 온도 예측 (Design of the Heat Exchanger in Pool Water Management System of a Research Reactor and Estimation of the Pool Water Temperature Using CFD)

  • 정남균
    • 에너지공학
    • /
    • 제25권2호
    • /
    • pp.45-51
    • /
    • 2016
  • 연구용원자로에서 여러 수조 및 일차냉각계통 내부에 존재하는 냉각재를 정화시키기 위해 설치되는 수조수관리계통은 일차냉각계통 펌프가 정지한 후 원자로에서 발생하는 노심 붕괴열을 제거한다. 또한, 작업수조 내의 조사물과 사용후핵연료저장조 내에 저장된 사용후핵연료에서 발생하는 열을 제거하여 수조수의 온도를 제한 값 이내로 유지하는 기능도 수행한다. 본 연구에서는 수조수관리계통의 설계와 운전 방법을 설계 초기단계에서 결정하기 위해서 상용프로그램인 Flowmaster를 이용한 전산해석방법으로 수조수관리계통의 열교환기를 설계하고, 각 수조수의 온도를 시간에 따라 예측하였다.

원환풀내에서 Quencher Device에 의한 고온수 분출로 일어나는 혼합유동에 관한 연구 (Analysis of Flow and Thermal Mixing Responses on Hot Water Discharge by Quencher Devices into an Annular Water pool)

  • 최성석;김종보
    • 대한설비공학회지:설비저널
    • /
    • 제14권1호
    • /
    • pp.21-30
    • /
    • 1985
  • One of the problems with the Boiling Water Reactor involves the flow and thermal mixings in the suppression water pool high pressure steam discharge into the pool in case of emergency core relief. Varioos heat sensitive devices and pumps for the reactor core cooling are installed in the middle of the suppression pool. Especially the pumps utilize pool water in order to cool the reactor core in emergency cases. In this case, the water temperature for the reactor cool ins should be below a certain temperature specified by the reactor design. In the present investigation, in other to determine the optimum locations of these pumping devices, numerical solutions have been obtained for the model to determine the f low mixing characteristics. Experimental investigations have also been carried out for the flow mixing and for the thermal mixing in the pool during the discharge. Considering that the discharge steam through the Quenching Device becomes hot water immediately in the water pool, the steam- equivalent hot water has been utilized. Examining these characteristices, it becomes possible to deform me the best locations for RCIC, LPCI , HPCI pumps in the suppression water pool for the emermency reactor core cooling.

  • PDF

Development of scaling approach based on experimental and CFD data for thermal stratification and mixing induced by steam injection through spargers

  • Xicheng Wang;Dmitry Grishchenko;Pavel Kudinov
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.1052-1065
    • /
    • 2024
  • Advanced Pressurized Water Reactors (APWRs) and Boiling Water Reactors (BWRs) employ a suppression pool as a heat sink to prevent containment overpressure. Steam can be discharged into the pool through multi-hole spargers or blowdown pipes in both normal and accident conditions. Direct Contact Condensation (DCC) creates sources of momentum and heat. The competition between these two sources determines the development of thermal stratification or mixing of the pool. Thermal stratification is of safety concern as it reduces the cooling capability compared to a completely mixed pool condition. In this work we develop a scaling approach to prediction of the thermal stratification in a water pool induced by steam injection through spargers. Experimental data obtained from large-scale pool tests conducted in the PPOOLEX and PANDA facilities, as well as simulation results obtained using validated codes are used to develop the scaling. Two injection orientations, namely radial injection through multi-hole Sparger Head (SH) and vertical injection through Load Reduction Ring (LRR), are considered. We show that the erosion rate of the cold layer can be estimated using the Richardson number. In this work, scaling laws are proposed to estimate both the (i) transient erosion velocity and (ii) the stable position of the thermocline. These scaling laws are then implemented into a 1D model to simulate the thermal behavior of the pool during steam injection through the sparger.

파이프의 가스메탈아크 용접에 있어 센서 시스템을 이용한 용융지 제어 및 용접선 추적에 관한 연구 (A Study on control of weld pool and torch position in GMA welding of steel pipe by using sensing systems)

  • 배강열;이지형;정수원
    • Journal of Welding and Joining
    • /
    • 제16권5호
    • /
    • pp.119-133
    • /
    • 1998
  • To implement full automation in pipe welding, it si most important to develop special sensors and their related systems which act like human operator when detecting irregular groove conditions. In this study, an automatic pipe Gas Metal Arc Welding (GMAW) system was proposed to full control pipe welding procedure with intelligent sensor systems. A five-axes manipulator was proposed for welding torch to automatically access to exact welding position when pipe size and welding angle were given. Pool status and torch position were measured by using a weld-pool image monitoring and processing technique in root-pass welding for weld seam tracking and weld pool control. To overcome the intensive arc light, pool image was captured at the instance of short circuit of welding power loop. Captured image was processed to determine weld pool shape. For weld seam tracking, the relative distance of a torch position from the pool center was calculated in the extracted pool shape to move torch just onto the groove center. To control penetration of root pas, gap was calculated in the extracted pool image, and then weld conditions were controlled for obtaining appropriate penetration. welding speed was determined with a fuzzy logic, and welding current and voltage were determined from a data base to correspond to the gap. For automatic fill-pass welding, the function of human operator of real time weld seam control can be substituted by a sensor system. In this study, an arc sensor system was proposed based on a fuzzy control logic. Using the proposed automatic system, root-pass welding of pipe which had gap variation was assured to be appropriately controlled in welding conditions and in torch position by showing sound welding result and good seam tracking capability. Fill-pass welding by the proposed system also showed very successful result by tracking along the offset welding line without any control of human operator.

  • PDF

Spot-GTA 용접자세에 따른 304 스테인리스강 용융지 표면 및 용접부 형상 거동 (Behavior of Weld Pool Shape and Weld Surface Deformation as a Function of Spot-GTA Welding Position for 304 Stainless Steel)

  • 강남현;박영도;조경목
    • Journal of Welding and Joining
    • /
    • 제26권2호
    • /
    • pp.62-68
    • /
    • 2008
  • Effects of gravitational orientation on gas tungsten arc welding (GTAW) for 304 stainless steel were studied to determine the critical factors for weld pool formation, such as weld surface deformation and weld pool shape. This study was accomplished through an analytical study of weld pool stability as a function of primary welding parameters (arc current and arc holding time), material properties (surface tension and density), and melting efficiency (cross-sectional area). The stability of weld pool shape and weld surface deformation was confirmed experimentally by changing the welding position. The arc current and translational velocity were the major factors in determining the weld pool stability as a function of the gravitational orientation. A 200A spot GTAW showed a significant variation of the weld pool formation as the arc held longer than 3 seconds, however the weld pool shape and surface morphology for a 165A spot GTAW were 'stable', i.e., constant regardless of the gravitational orientation. The cross-sectional area of the weld (CSA) was one of the critical factors in determining the weld pool stability. The measured CSA ($13.5mm^2$) for the 200A spot GTAW showed a good agreement with the calculated CSA ($14.9mm^2$).

저수지 경관자원을 활용한 야외수영장 개발사업의 투자효과 분석 (Analysis of Investment Effect on the Outdoor Swimming Pool Utilizing Reservoir's Amenity Resources)

  • 권용대;황준우
    • 농업과학연구
    • /
    • 제34권1호
    • /
    • pp.85-97
    • /
    • 2007
  • This study aimed at analyzing the economic effect of outdoor swimming pool investment using the reservoir's amenity resources. We focused on the identification of the amenity value of reservoir in the rural area and the economic evaluation for establishing This study aimed at analyzing the economic effect of outdoor swimming pool investment using the reservoir's amenity resources. We focused on the identification of the amenity value of reservoir in the rural area and the economic evaluation for establishing infrastructure such as swimming pool based on the reservoir's landscape value. To this end, we have conducted the case study on the outdoor swimming pool in connection with Go-Bok reservoir in Yeon-Gi county, Chungnam Province and estimated its income effect on the rural community by cost-benefit analysis method. The research results are as follows; 1) Outdoor swimming pool participants, with 11,581 visitors totaled to Yeon-gi county every year, was estimated to spend the worth of 58,446 thousand won paid for the agricultural product purchase and etc. 2) Internal rate return of the outdoor swimming pool project was estimated to 16.19%, which considered to be economically feasible comparing with 10% of current capital opportunity cost. Based on the results of this study, we suggest the following strategies for development of amenity value of swimming pool in connected with the reservoir; 1) Reservoir amenities should be well preserved even after construction of swimming pool lest losing amenity values while managing the facilities. 2) Measures to increase the marketing value of intangible reservoir's amenities through promotion should be established. 3) Effective program for more visitors with longer staying and more agricultural products sales should be designed.

  • PDF

신경회로를 이용한 GMA 용접 공정에서의 용융지의 크기 제어 (Control of Weld Pool Size in GMA Welding Process Using Neural Networks)

  • 임태균;조형석;부광석
    • Journal of Welding and Joining
    • /
    • 제12권1호
    • /
    • pp.59-72
    • /
    • 1994
  • This paper presents an on-line quality monitoring and control method to obtain a uniform weld quality in gas metal arc welding (GMAW) processes. The geometrical parameters of the weld pool such as the top bead width and the penetration depth plus half back width are utilized to assess the integrity of the weld quality. Since a good quality weld is characterized by a relatively high depth-to-width ratio in its dimensions, the second geometrical parameter is regulated to a desired one. The monitoring variables are the surface temperatures measured at various points on the top surface of the weldment which are strongly related to the formation of the weld pool The relationship between the measured temperatures and the weld pool size is implemented on the multilayer perceptrons which are powerful for realization of complex mapping characteristics through training by samples. For on-line quality monitoring and control, it is prerequisite to estimate the weld pool sizes in the region of transient states. For this purpose, the time history of the surface temperatures is used as the input to the neural estimator. The control purpose is to obtain a uniform weld quality. In this research, the weld pool size is directly regulated to a desired one. The proposed controller is composed of a neural pool size estimator, a neural feedforward controller and a conventional feedback controller. The pool size estimator predicts the weld pool size under growing. The feedforward controller compensates for the nonlinear characteristics of the welding process. A series of simulation studies shows that the proposed control method improves the overall system response in the presence of changes in torch travel speed during GMA welding and guarantees the uniform weld quality.

  • PDF

계단상 하상구조를 이용한 계류복원 방안 (Restoration Method of Small Stream using Artificial Step-pool Sequences)

  • 김석우;전근우;김경남;박종민;마루타니 토모미
    • 한국환경복원기술학회지
    • /
    • 제14권4호
    • /
    • pp.11-23
    • /
    • 2011
  • Mountain streams, which are major components of an entire river network, play an important role as the source of water, sediment, coarse and fine organic matter, and nutrients for lowland rivers. Therefore, dynamics and downstream linkages of each compartment of the mountain stream can be essential for watershed management in catchment scale. The dynamics and downstream linkages are understood as a development of step-pool sequences along a river course. Recently, stream restoration after flooding event often employ the development of step-pool sequences in the world. In this paper, we 1) examined the geomorphic characteristics and the role of step-pool sequences in steep mountain streams by reviewing the results of past studies, and 2) introduced the case studies of stream restoration using step-pool sequences, and finally 3) addressed design methods considering geometry and stability of artificial step-pool sequences for stream restoration. Step-pool sequences play an important role not only as roughness with energy dissipation but also as heterogeneity of stream feature for aquatic habitat. Step-pool sequences, even if they are constructed artificially along a stream, may be effective for small stream restoration considering eco-friendly torrent controls. So far the artificial step-pool sequences were employed for mountainous streams, but those would be applied to urban stream.