• Title/Summary/Keyword: POLLUTANTS

Search Result 4,221, Processing Time 0.033 seconds

Monitoring Ground-level SO2 Concentrations Based on a Stacking Ensemble Approach Using Satellite Data and Numerical Models (위성 자료와 수치모델 자료를 활용한 스태킹 앙상블 기반 SO2 지상농도 추정)

  • Choi, Hyunyoung;Kang, Yoojin;Im, Jungho;Shin, Minso;Park, Seohui;Kim, Sang-Min
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1053-1066
    • /
    • 2020
  • Sulfur dioxide (SO2) is primarily released through industrial, residential, and transportation activities, and creates secondary air pollutants through chemical reactions in the atmosphere. Long-term exposure to SO2 can result in a negative effect on the human body causing respiratory or cardiovascular disease, which makes the effective and continuous monitoring of SO2 crucial. In South Korea, SO2 monitoring at ground stations has been performed, but this does not provide spatially continuous information of SO2 concentrations. Thus, this research estimated spatially continuous ground-level SO2 concentrations at 1 km resolution over South Korea through the synergistic use of satellite data and numerical models. A stacking ensemble approach, fusing multiple machine learning algorithms at two levels (i.e., base and meta), was adopted for ground-level SO2 estimation using data from January 2015 to April 2019. Random forest and extreme gradient boosting were used as based models and multiple linear regression was adopted for the meta-model. The cross-validation results showed that the meta-model produced the improved performance by 25% compared to the base models, resulting in the correlation coefficient of 0.48 and root-mean-square-error of 0.0032 ppm. In addition, the temporal transferability of the approach was evaluated for one-year data which were not used in the model development. The spatial distribution of ground-level SO2 concentrations based on the proposed model agreed with the general seasonality of SO2 and the temporal patterns of emission sources.

The Effect of the Chang in Forest Environment on physico-chemical Properhes of Soil Located in Seoul Royal Tomb (서울 왕릉지역의 산림환경변화가 토양 이.화학성에 미치는 영향)

  • Nam, Yi;Yee, Sun;Bae, Sang-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.3
    • /
    • pp.32-37
    • /
    • 2005
  • The soil properties of the royal tombs (managed by cultural properties administration) located in Seoul and suburban Gyonggi area were investigated to see the influence of the change in soil environment on the royal tomb s이I. To compare the soil chemical properties of four royal tombs soil of Changdeokgung, Jongmyo, Seooneung, and Dongguneung, pH, organic content, available phosphate, extractable calcium, extractable potassium, extractable magnesium, cation exchange capacity, degree of base saturation, and total nitrogen content were measured. The concentrations of Cd, Pb, and Cu measured as the degree of heavy metal contamination can be an indication of atmospheric pollution in the soil environment. To estimate the degree of soil compaction, soil hardness, pore space, porosity, bulk density, and soil atmosphere were analyzed. Through these studies, following conclusions were made: 1. The soil hardness and pore space which can be used as indexes of soil compaction, were worse in the soil of Seooneung than in those of Changdeokgung and Dongguneury. These phenomena seem to be the result of increase in visitors in Seooneung and Dongguneung better and soil management in Changdeokgung and Dongguneung. When three different regions of forest area, prohibited area, and soil compaction area in Seooneung soil were compared, the degree of compaction in the forest area was less than compaction area, indicating the need for the employment of soil resting period in the compaction area. 2. The pH measurements of all four royal tombs soil were higher in top soil than sub soil. The higher soil pH values in Jongmyo and Seooneung seem to result from the application of soil conditioner. In the case of Seooneung, the values for soil pH and organic content were higher in the forest area than those in compaction area. It is thought that active soil management was employed in the forest area through application of organic matters and soil conditioners. 3. The heavy metal contents from soil of Changdeokgung and Jongmyo were higher than that from soil of Dongguneung. Since Changdeokgung and Jongmyo are located inside Seoul, it is thought that the high level of heavy metal concentrations in these royal tomb soil is the result of accumulation of pollutants from the city.

Treatment of Contaminated Sediment for Water Quality Improvement of Small-scale Reservoir (소하천형 호수의 수질개선을 위한 퇴적저니 처리방안 연구)

  • 배우근;이창수;정진욱;최동호
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.31-39
    • /
    • 2002
  • Pollutants from industry, mining, agriculture, and other sources have contaminated sediments in many surface water bodies. Sediment contamination poses a severe threat to human health and environment because many toxic contaminants that are barely detectable in the water column can accumulate in sediments at much higher levels. The purpose of this study was to make optimal treatment and disposal plan o( sediment for water quality improvement in small-scale resevoir based on an evaluation of degree of contamination. The degree of contamination were investigated for 23 samples of 9 site at different depth of sediment in small-scale J river. Results for analysis of contaminated sediments were observed that copper concentration of 4 samples were higher than the regulation of hazardous waste (3 mg/L) and that of all samples were exceeded soil pollution warning levels for agricultural areas. Lead and mercury concentration of all samples were detected below both regulations. Necessary of sediment dredge was evaluated for organic matter and nutrient through standard levels of Paldang lake and the lower Han river in Korea and Tokyo bay and Yokohama bay in Japan. The degree of contamination for organic matter and nutrient was not serious. Compared standard levels of Japan, America, and Canada for heavy metal, contaminated sediment was concluded as lowest effect level or limit of tolerance level because standard levels of America and Canada was established worst effect of benthic organisms. The optimal treatment method of sediment contained heavy metal was cement-based solidification/stabilization to prevent heavy metal leaching.

Are Bound Residues a Solution for Soil Decontamination\ulcorner

  • Bollag, Jean-Marc
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.10a
    • /
    • pp.111-124
    • /
    • 2003
  • Processes that cause immobilization of contaminants in soil are of great environmental importance because they may lead to a considerable reduction in the bioavailability of contaminants and they may restrict their leaching into groundwater. Previous investigations demonstrated that pollutants can be bound to soil constituents by either chemical or physical interactions. From an environmental point of view, chemical interactions are preferred, because they frequently lead to the formation of strong covalent bonds that are difficult to disrupt by microbial activity or chemical treatments. Humic substances resulting from lignin decomposition appear to be the major binding ligands involved in the incorporation of contaminants into the soil matrix through stable chemical linkages. Chemical bonds may be formed through oxidative coupling reactions catalyzed either biologically by polyphenol oxidases and peroxidases, or abiotically by certain clays and metal oxides. These naturally occurring processes are believed to result in the detoxification of contaminants. While indigenous enzymes are usually not likely to provide satisfactory decontamination of polluted sites, amending soil with enzymes derived from specific microbial cultures or plant materials may enhance incorporation processes. The catalytic effect of enzymes was evaluated by determining the extent of contaminants binding to humic material, and - whenever possible - by structural analyses of the resulting complexes. Previous research on xenobiotic immobilization was mostly based on the application of $^{14}$ C-labeled contaminants and radiocounting. Several recent studies demonstrated, however, that the evaluation of binding can be better achieved by applying $^{13}$ C-, $^{15}$ N- or $^{19}$ F-labeled xenobiotics in combination with $^{13}$ C-, $^{15}$ N- or $^{19}$ F-NMR spectroscopy. The rationale behind the NMR approach was that any binding-related modification in the initial arrangement of the labeled atoms automatically induced changes in the position of the corresponding signals in the NMR spectra. The delocalization of the signals exhibited a high degree of specificity, indicating whether or not covalent binding had occurred and, if so, what type of covalent bond had been formed. The results obtained confirmed the view that binding of contaminants to soil organic matter has important environmental consequences. In particular, now it is more evident than ever that as a result of binding, (a) the amount of contaminants available to interact with the biota is reduced; (b) the complexed products are less toxic than their parent compounds; and (c) groundwater pollution is reduced because of restricted contaminant mobility.

  • PDF

The Outbreak, Maintenance, and Decline of the Red Tide Dominated by Cochlodinium polykrikoides in the Coastal Waters off Southern Korea from August to October, 2000 (2000년 여름 남해안에 나타난 Cochlodinium polykrikoides 우점 적조의 발생 특성)

  • Jung, Chang-Su;Lee, Chang-Kyu;Cho, Yong-Chul;Lee, Sam-Geun;Kim, Hak-Gyoon;Chung, Ik-Kyo;Lim, Wol-Ae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.2
    • /
    • pp.68-77
    • /
    • 2002
  • We investigated the outbreak, maintenance, and decline of the red tide dominated by C. polykrikoides in the coastal waters off Southern Korea from August to October, 2000, by combining field data and NOAA satellite images. In general, the C. polykrikoides blooms, which have occured annually in Korean coastal waters from 1995 to 1999, initiate between late August and early September around Narodo Island and expand to the whole area of the southern coast. However, initiation and short-term change of the bloom of 2000 were quite different from the pattern observed previously. In mid-August, thermal fronts in sea surface temperature(SST) were formed: 1) between the Tsushima Warm Current Water (TWCW) and the Southern Korean Coastal Waters (SKCW), 2) between the jindo cold water mass and the southwestern coastal waters, and 3) between the upwelled cold waters in the southeast coast and the offshore warm waters. Free-living cells of C. polykrikoides were concentrated in these frontal regions. In late August, the thermal front TWCW-SKCW approached the mouth of Yeosuhae Bay where Seomjin River water and anthropogenic pollutants from the Industrial Complex of Gwangyang Bay are discharged. In the blooms of 2000 initiated in Yeosuhae Bay in late August, the dominant species, C. polykrikoides, co-occured with Alexandrum tamarense, Gymnodinium mikimotoi, Skeletonema coastatum, and Chaetoceros spp. Two typhoons, 'Prapiroon' and 'Saomai' during and the C. polykrikoides bloom probably affected the abundance of this species. After the former typhoon passed the Korean Peninsula, cell growth of C. polykrikoides was maximal, but after the latter typhoon, the C. polykrikoides bloom disappeared (20 September). On 5 October, the blooms dominated by C. polykrikoides broke out within the coastal waters of Jinhae Bay and Hansan-Keoje Bay. NOAA satellite images showed that the isothermal line of 22$^{\circ}C$ extended into Jinhae Bay. In this bloom, C. polykrikoides also occurred simultaneously with Akashiwo sanguinea(=Gym-nodinium sangunium), a common red tide-forming dinoflagellate species in fall and winter in these coastal bays.

Biodegradation of Phenol by Comamonas testosteroni DWB-1-8 Isolated from the Activated Sludge of Textile Wastewater (섬유 폐수 활성 슬러지에서 분리한 Comamonas testosteroni의 생물학적 페놀 분해)

  • Kwon, Hae Jun;Choi, Doo Ho;Kim, Mi Gyeong;Kim, Dong-Hyun;Kim, Young Guk;Yoon, Hyeokjun;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.156-161
    • /
    • 2020
  • Since industrialization, the production and utilization of various chemicals has contributed to improving the quality of our lives, but the subsequent discharge of massive waste is inevitable, and environmental pollution is becoming more serious every day. Exposure to chemicals as a result of environmental pollution is having a negative effect on human health and the ecosystem, and cleaning up the polluted environment that can affect our lives is a very important issue. Toxic aromatic compounds have been detected frequently in soil, groundwater, and wastewater because of the extensive use of oil products, and phenol, which is used to produce synthetic resins, textiles, and dyes, is one of the major pollutants, along with insecticides and preservatives. Phenol can cause dyspnea, headache, vomiting, mutation, and carcinogenesis. Phenol-degrading bacterium DWB-1-8 was isolated from the activated sludge of textile wastewater; this strain was identified as Comamonas testosteroni by 16S rRNA gene sequencing. The optimal culture conditions for the cell growth and degradation of phenol were 0.7% K2HPO4, 0.6% NaH2PO4, 0.1% NH4NO3, 0.015% MgSO4·7H2O, 0.001% FeSO4·7H2O, an initial pH of 7, and a temperature of 30℃. The strain was also able to grow by using other toxic compounds, such as benzene, toluene, or xylene (BTX), as the sole source of carbon.

Dynamics of Inorganic Nutrients and Phytoplankton in Shihwa Reservoir (시화호에서 무기영양염과 식물플랑크톤의 동태)

  • Kim, Dong-Sup;Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.2 s.90
    • /
    • pp.109-118
    • /
    • 2000
  • The dynamics of inorganic nutrients and phytoplankton population were examined at eight stations of Shihwa Reservoir, which situated near the cities newly constructed and the industrial complex of West-sea in Korea, from January to December 1999. Among environmental factors, average concentration of $NH_4$, SRP and SRSi were $522.7\;{\mu}g\;N/l$, $9.8\;{\mu}g\;N/l$ and $0.26\;{\mu}g\;Si/l$, respectively. Water quality was extremely deteriorated by a great amount of pollutants load into inner reservoir after the event of rainfall. Nutrients concentration was suddenly decreased toward the lower part. While $NO_3$ concentration did not much varied among stations, but it was relatively high in winter season. Chlorophyll-a concentration was high at the upper part of the reservoir, with average of $37.2\;{\mu}/l$, and closely related to the fluctuation of $NH_4$, SRP and SRSi concentrations. The phytoplankton development in the water column was dominated by diatom (autumn), prasinoid (winter) and dinoflagellate (summer). Dominant phytoplankton were composed to Skeletonema costatum of diatom, Prorocentrum minimum of dinoflagellate, Chroomonas spp. of cryptomonad, Eutreptiella gymnastica of euglenoid and Pyramimonas spp. of prasinoid. The large bloom of phytoplankton at the upper zone of the Shihwa Reservoir after inflow of a seawater were consistently observed. In consequence, water quality management of the inlet stream was assessed to be very important and urgent.

  • PDF

A Study on Leaching Characteristics of $Cr^{6+}$ in Cement Grout Materials (시멘트 그라우트재에서 $Cr^{6+}$용출특성에 관한 연구)

  • 김동우;이재영;천병식
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.2
    • /
    • pp.62-69
    • /
    • 2003
  • The aim of research is the evaluation of the $Cr^{6+}$ emission features of the liquid injection through emission experiments in varying conditions, based on a field-mixing ratio. The results showed that the content of $Cr^{6+}$ content in cement measured had an Ordinary Potland Cement (OPC) of 25.3 mg/kg, which constitute the largest portion among the other materials. Likewise, the emission experiment of homo-gel and sand-gel generally satisfied the standard of KSLT (Korea Standard Leaching Test) in waste of 1.5 mg/L, but in case of the standard of KSLT in soil the emission of OPC $Cr^{6+}$ of 4.85 mg/kg. These conditions is a little exceeded the criteria in the ‘Ga’ area in terms of Korea Soil Environmental Preservation Law. In addition, results generated by the mock-up injection facilities revealed that $Cr^{6+}$ emission increased as Water/Cement and injection pressure increased. At injection pressure higher than 4 kg/㎤, $Cr^{6+}$ emission exceeded the water preservation standard of 0.5 mg/L. Similarly, a pattern experiment of C $r^{6+}$ emission according to pH was conducted, in order to evaluate the $Cr^{6+}$ emission features of grout materials in leachate below pH 5 such as pH 4 acid rain or landfill. Results show that $Cr^{6+}$ emission dramatically increased in high acidic or basic state. It indicates that $Cr^{6+}$ emission will probably increase in an environment where grout materials are injected. On the other hand, concentration of leachate was determined in areas where grout materials are used. The results show that the concentration of emission in an ultra purity condition does not manifest intensity, and is affected in the OPC>MC>SC order. It means that the pollutants or $Cr^{6+}$ emission increases with decreasing concentration. As such, $Cr^{6+}$ emission will probably exceed the countermeasure criteria according to the types of gout materials. Similarly, high pressure or injection will cause increased $Cr^{6+}$ emission. Therefore, the selection of materials or mixing ratio should be considered in general as well as according to specific industries, based on the strength and pH of $Cr^{6+}$ emission.

A Study on the Applicability of Torrefied Wood Flour Natural Material Based Coagulant to Removal of Dissolved Organic Matter and Turbidity (용존성 유기물질 및 탁도 제거를 위한 반탄화목분 천연재료 혼합응집제의 적용성에 관한 연구)

  • PARK, Hae Keum;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.472-487
    • /
    • 2020
  • With the emergence of abnormal climate due to the rapid industrialization, the importance of water quality management and management costs are increasing every year. In Korea, for the management of total phosphorus and total nitrogen, the major materials causing the water quality pollution, coagulants are injected in sewage treatment plants to process organic compounds. However, if the coagulant is injected in an excessive amount to PAC (Poly Aluminium Chloride), a secondary pollution problem might occur. As such, a study on the applicability of natural material-based coagulant is being conducted in Korea. Thus, this study aimed to evaluate the applicability of a mixed coagulant developed by analyzing water quality pollutants T-P, T-N as well as their turbidity, in order to derive the optimum mixing ratio between PAC and torrefied wood flour for the primary settling pond effluent. Under the condition where the content of PAC (10%) and torrefied wood flour is 1%, T-P showed the maximum removal efficiency of 92%, and T-N showed approximately 22%. This indicates that removal of T-N which includes numerous positively charged organic compounds that are equivalent to mixed coagulant is not well accomplished. Turbidity showed the removal efficiency of approximately 91%. As such, 1% of torrefied wood flour was determined to be the optimum addition. As a result of analyzing the removal efficiency for organic compounds by reducing PAC concentration to 7%, T-P showed a high maximum removal efficiency of 91%, T-N showed 32%, and turbidity showed the maximum of 90%. In addition, a coagulation process is performed by using the mixed coagulant based on 1% content of torrefied wood flour produced in this study by performing a coagulation performance comparative experiment with PAC (10%). As a result, PAC concentration was reduced to 30-50%, a similar performance with other coagulants in market was secured, PAC injection amount was reduced that an economic effect can be achieved, and it is considered to perform a stable water treatment that reduces the secondary pollution problem.

Evaluation of Future Turbidity Water and Eutrophication in Chungju Lake by Climate Change Using CE-QUAL-W2 (CE-QUAL-W2를 이용한 충주호의 기후변화에 따른 탁수 및 부영양화 영향평가)

  • Ahn, So Ra;Ha, Rim;Yoon, Sung Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.145-159
    • /
    • 2014
  • This study is to evaluate the future climate change impact on turbidity water and eutrophication for Chungju Lake by using CE-QUAL-W2 reservoir water quality model coupled with SWAT watershed model. The SWAT was calibrated and validated using 11 years (2000~2010) daily streamflow data at three locations and monthly stream water quality data at two locations. The CE-QUAL-W2 was calibrated and validated for 2 years (2008 and 2010) water temperature, suspended solid, total nitrogen, total phosphorus, and Chl-a. For the future assessment, the SWAT results were used as boundary conditions for CE-QUAL-W2 model run. To evaluate the future water quality variation in reservoir, the climate data predicted by MM5 RCM(Regional Climate Model) of Special Report on Emissions Scenarios (SRES) A1B for three periods (2013~2040, 2041~2070 and 2071~2100) were downscaled by Artificial Neural Networks method to consider Typhoon effect. The RCM temperature and precipitation outputs and historical records were used to generate pollutants loading from the watershed. By the future temperature increase, the lake water temperature showed $0.5^{\circ}C$ increase in shallow depth while $-0.9^{\circ}C$ in deep depth. The future annual maximum sediment concentration into the lake from the watershed showed 17% increase in wet years. The future lake residence time above 10 mg/L suspended solids (SS) showed increases of 6 and 17 days in wet and dry years respectively comparing with normal year. The SS occupying rate of the lake also showed increases of 24% and 26% in both wet and dry year respectively. In summary, the future lake turbidity showed longer lasting with high concentration comparing with present behavior. Under the future lake environment by the watershed and within lake, the future maximum Chl-a concentration showed increases of 19 % in wet year and 3% in dry year respectively.