• Title/Summary/Keyword: POLLUTANT MANAGEMENT

Search Result 673, Processing Time 0.033 seconds

Modeling Large Scale of Urban Nonpoint Source Pollution using a Geographic Information System (지리정보체계를 이용한 도시 비점원오염의 대축척 모형화)

  • Kim, Kye-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.1 s.1
    • /
    • pp.171-180
    • /
    • 1993
  • Concern about nonpoint source pollution associated with urban storm water has led to the development of new tools for better water quality planning. This paper presents an application of a geographic information system (GIS) for urban water quality study. The GIS was used to manage land use data for nonpoint source pollution modeling and to aggregate pollutant loadings within various types of geographic units. An empirical water quality model was used to estimate pollutant loadings based primarily on land use. A land use coverage was created by updating an old coverage through interpretation of recent photography. This land use coverage was also used to record all pollutant loadings for each land use polygon. Storm sewer maps were digitized and interpreted to create a coverage of storm sewer basins and sub-basins. By overlaying pollutant loadings with the sewer sub-basin layer, aggregated pollutant loadings for major sewer outfalls were calculated. Based on the loading information, critical areas of excessive pollutant loadings were located and the effectiveness of Best Management Practices (BMPs) to control pollutant loadings were evaluated.

  • PDF

GIS based Water-pollutant Buffering Zone Management

  • Kim, Kye-Hyun;Yoon, Chun-Joo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.506-506
    • /
    • 2002
  • S. Korean Government has accelerating its efforts to enhance the quality of the drinking water. The Ministry of Environment has declared the law of securing water-pollutant buffering zone to minimize the inflow of the point and nonpoint sources into the drinking water sources. As a first phase of installing nationa-wide water-pollutant buffering zone, approximately 300km buffering zone has been delineated along the South and North Han river, the major drinking water sources for the capital area of S. Korea, which has the population of more than 12 millions. The buffering zone has the width of 1,000 meter for the special protection area, and 500 meter for the remaining area from both ends of the river. The major works have been done in three stages. Firstly, the boundaries lines of the buffering zone was delineated on the digital topographic maps. Secondly, the maps were overlayed with the cadastral maps to identify individual land parcels, the street address of the major pollutant discharging facilities, and all different types of pollutants including livestocks. Thirdly, the field work has been done as a verification. Once the buffering zone was generated, all the information for the buffering gone were created or imported from other government agencies including official land price, details of the major manufacturing facilities discharging considerable amount of pollutants, major motels and resorts, not to mention of restaurants, etc. Also, major livestock houses were located to identify the path of the pollutant inflow to the drinking water source. Further works need to be continued such as purchasing private lands within the buffering zone and change the land use in the efforts to decrease the pollutant amount and to provide more environmentally friendly space. Also, high resolution satellite imagery should be utilized in the near future as a cost-effective data source to update all the landuse activities within buffering zone.

  • PDF

The Influence Analysis of GIS-based Soil Erosion in Water-pollutant Buffering Zone (GIS기반 수변구역의 토사유실 영향 분석)

  • Lee, Geun Sang;Hwang, Eui Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.335-340
    • /
    • 2006
  • Geology and terrain of Imha basin has a very weak characteristics to soil erosion, so much soil particles flow into Imha reservoir and bring about high density turbid water when it rains a lot. Especially, since the agricultural area of Imha basin is mainly located in river boundary, Imha reservoir has suffered from turbid water by soil erosion. Therefore, it is important to estimate the influence of soil erosion to establish efficient management of water-pollutant buffering zone for the reduction of turbid water. By applying GIS-based RUSLE model, this study can acquire 12.23% that is the ratio of soil erosion in water-pollutant buffering zone and is higher than area-ratio (9.95%) of water-pollutant buffering zone. This is why the area-ratio of agricultural district (27.24%) in water-pollutant buffering zone is higher than the area-ratio of agricultural district (14.96%) in Imha basin. Also as the result of soil erosion in sub-basin, Daegok basin shows highest soil erosion in water-pollutant buffering zone, second is Banbyeon_10 basin and last is Seosi basin.

Economic Efficiency of the BAT Standards in a Multi-pollutant Environment (다오염물질 상황에서의 최적가용기법 기준의 경제적 효율성에 관한 연구)

  • Han, Taek-Whan;Lim, Dongsoon
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.2
    • /
    • pp.141-151
    • /
    • 2019
  • Korea has passed the Act on the Integrated Control of Pollutant-Discharging Facilities in 2015, and the integrated environmental management under the BAT standard is underway. To summarize the nature of integrated environmental management, it is the regulation by the integration of the management of the multi-pollutant source and the technical standard of BATs. In general, in environmental economics, regulation-based on technical standards are known to be inefficient. This paper attempts to evaluate the efficiency of BAT standards from an economic point of view. A simple multi-pollutant model demonstrates that the inefficiency of the environmental tax with imperfect information in a single pollutant situation is amplified under multi-pollutant conditions. The simultaneous introduction of BAT and IPPC can be partially explained by this logic. It is also highlighted by the strengthening of BAT standards by EU, as a countermeasure to the potential deterioration of air quality caused by the change of effective environmental taxes accompanying the fuel and emission price changes.

Assessment of Non-Point Source Pollutant Loads and Priority Management Areas using an HSPF Model in Sejong City, South Korea

  • Lim, Dohun;Lee, Yoonjin
    • Journal of Environmental Science International
    • /
    • v.26 no.8
    • /
    • pp.881-891
    • /
    • 2017
  • In this study, the discharge loads of non-point pollution sources were analyzed using a Hydrologic Simulation Program-Fortran (HSPF) model for 46 sub-watersheds in order to guide the management plan for water and streams passing through the city. The results using HSPF showed good applicability in comparison to point measurements, which were based on BOD, TP, and TN. The mean value of the BOD loads was $4.08kg/km^2$ per day, and the highest level of BOD was $17.75kg/km^2$ per day at Namri. Three potential areas of high priority for the installment of constructed wetlands were selected in order to reduce non-point pollution sources based on BOD loads and on environmental and economic conditions. The results for these scenarios indicated a maximum rate of reduction in BOD of 39.12% within the proposed constructed wetlands.

Assessing Impact of Non-Point Source Pollution by Management Alternatives on Arable Land using AGNPS Model (AGNPS 모형을 이용한 농경지 관리대안에 따른 비점오염 저감효과 분석)

  • Lee, Eun-Jeong;Kim, Hak-Kwan;Park, Seung-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1008-1013
    • /
    • 2007
  • The objectives of the paper were to identify appropriate best management practices (BMPs) for reducing nonpoint source (NPS) pollutant loadings and to simulate the effects of the application of the several BMP scenarios on the study watershed using Agricultural Nonpoint Source (AGNPS) model. AGNPS model was calibrated and validated for runoff, sediment yield, and nutrient components using the observed hydrologic and water quality data. The simulated runoff, sediment, and nutrient components were well agreed with observed data. The validated AGNPS was applied to estimate the NPS pollution removal efficiency for BMP scenarios which were selected considering the pollutant characteristics of the study watershed.

  • PDF

Applicability of Water Quality Indicators as Target Pollutants for Total Maximum Daily Loads (수질오염총량관리를 위한 대상물질 적용성 분석)

  • Park, Jun Dae;Oh, Seung Young;Park, Jae Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.531-539
    • /
    • 2013
  • In order to apply a water quality indicator as a certain target pollutant, the indicator should have the representability of an index for the management of Total Maximum Daily Loads (TMDLs). Scientific groundwork and treatment technologies also should be provided for the application of the indicator. This study analyzed the applicability of major water quality indicators for target pollutants. The results showed that four water quality indicators of TOC, T-N, SS & T-Coli can be considered as target pollutants besides existing BOD and T-P. These indicators can be applied with the preparations such as essential basic data, pollution load estimation framework as well as legal criteria setting when the need is raised. As the importance of TOC, which is considered as a replacement of BOD, is emphasized, technical and institutional terms are being prepared in order to determine TOC as another target pollutant in the near future. It could be considered to combine TOC with BOD for the time being during the $3^{rd}$ stage of TMDLs in view of the present conditions for the management of TOC. TOC can be the most effective index for the organic matter and help to be managed more systematically in the waterbodies where rivers and lakes are mutually connected.

Application of ecosystem modeling for the assessment of water quality in an eutrophic marine environment; Jinhae Bay (부영양화된 해양환경의 수질개선을 위한 해양생태계모델링의 적용 ; 한국의 진해만)

  • Lee, Won-Chan;Park, Sung-Eun;Hong, Sok-Jin;Oh, Hyun-Taik;Jung, Rea-Hong;Koo, Jun-Ho
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.217-219
    • /
    • 2006
  • This study focused an water quality response to land-based pollution loads and the appropriate pollutant load reduction in Chinhae Bay using an eco-hydrodynamic model. Land-based discharge foam urban areas, industrial complex and sewage treatment plant was the greatest contributor to cause red-tide blooms and summer hypoxia. Tidal currents velocity af the ebb tide was about 10 cm/s stronger than that of the flood tide. A residual current was simulated to. have a slightly complicated pattern with ranging from 0.1 to. 2.7 cm/s. In Masan Bay, pollutant materials cannot flaw from the inner to the outer bay easily because af residual currents flaw southward at surface and northward at the bottom. The simulation results of COD distribution showedhigh concentrations aver 3 mg/L in the inner part of Masan Bay related pollutant discharge, and charge, and lower levels less than 1.5mg/L in the central part of Chinhae Bay. For improvement water quality in Chinhae Bay, it is necessary to reduce the organic and inorganic loads from paint sources by mare than 50% and ameliorate severe polluted sediment.

  • PDF

Evaluation of Applicability of APEX-Paddy Model based on Seasonal Forecast (계절예측 정보 기반 APEX-Paddy 모형 적용성 평가)

  • Cho, Jaepil;Choi, Soon-Kun;Hwang, Syewoon;Park, Jihoon
    • Journal of Korean Society of Rural Planning
    • /
    • v.24 no.4
    • /
    • pp.99-119
    • /
    • 2018
  • Unit load factor, which is used for the quantification of non-point pollution in watersheds, has the limitation that it does not reflect spatial characteristics of soil, topography and temporal change due to the interannual or seasonal variability of precipitation. Therefore, we developed the method to estimate a watershed-scale non-point pollutant load using seasonal forecast data that forecast changes of precipitation up to 6 months from present time for watershed-scale water quality management. To establish a preemptive countermeasure against non-point pollution sources, it is possible to consider the unstructured management plan which is possible over several months timescale. Notably, it is possible to apply various management methods such as control of sowing and irrigation timing, control of irrigation through water management, and control of fertilizer through fertilization management. In this study, APEX-Paddy model, which can consider the farming method in field scale, was applied to evaluate the applicability of seasonal forecast data. It was confirmed that the rainfall amount during the growing season is an essential factor in the non-point pollution pollutant load. The APEX-Paddy model for quantifying non-point pollution according to various farming methods in paddy fields simulated similarly the annual variation tendency of TN and TP pollutant loads in rice paddies but showed a tendency to underestimate load quantitatively.

Assessment of Estuary Reservoir Water Quality According to Upstream Pollutant Management Using Watershed-Reservoir Linkage Model (유역-호소 연계모형을 이용한 상류 오염원 관리에 따른 담수호 수질영향평가)

  • Kim, Seokhyeon;Hwang, Soonho;Kim, Sinae;Lee, Hyunji;Jun, Sang Min;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.1-12
    • /
    • 2022
  • Estuary reservoirs were artificial reservoir with seawalls built at the exit points of rivers. Although many water resources can be saved, it is difficult to manage due to the large influx of pollutants. To manage this, it is necessary to analyze watersheds and reservoirs through accurate modeling. Therefore, in this study, we linked the Hydrological Simulation Program-FORTRAN (HSPF), Environmental Fluid Dynamics Code (EFDC), and Water quality Analysis Simulation Program (WASP) models to simulate the hydrology and water quality of the watershed and the water level and quality of estuary lakes. As a result of applying the linked model in stream, R2 0.7 or more was satisfied for the watershed runoff except for one point. In addition, the water quality satisfies all within 15% of PBIAS. In reservoir, R2 0.72 was satisfied for water level and the water quality was within 15% of T-N and T-P. Through the modeling system, We applied upstream pollutant management scenarios to analyze changes in water quality in estuary reservoirs. Three pollution source management were applied as scenarios, the improvement of effluent water quality from the sewage treatment plant and the livestock waste treatment plant was effective in improving the quality of the reservoir water, while the artificial wetland had little effect. Water quality improvement was confirmed as a measure against upstream pollutants, but it was insufficient to achieve agricultural water quality, so additional reservoir management is required.