• Title/Summary/Keyword: PNFS Algorithm

Search Result 3, Processing Time 0.015 seconds

A Complexity Reduced PNFS Algorithm for the OFDM System with Frequency Offset and Phase Noise (주파수 오프셋과 위상 잡음이 있는 OFDM 시스템에서 PNFS 알고리즘 간소화를 통한 복잡도 개선)

  • Kim, Do-Hoon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.499-506
    • /
    • 2012
  • In this paper, we analyze the effects of phase noise and frequency offset that cause performance degradation. Basically, we like to propose reduced PNFS(Phase Noise and Frequency offset Suppression) algorithm. The OFDM system is seriously affected by ICI component such as phase noise, frequency offset and Doppler effects. Especially, complicated processing algorithm with high complexity was required it in order to compensate those ICI components. So, we propose PNFS algorithm that can decrease complexity and compensate ICI components. We propose a method decreased complexity by approximation of parameters that affect slightly performance change and compare the quantity of conventional and revised PNFS algorithm. Also, simulation shows that BER performance of revised PNFS algorithm can be improved slightly.

A Fast ICI Suppression Algorithm with Adaptive Channel Estimation for the LTE-Advanced Uplink System (LTE-Advanced 상향 링크 시스템을 위한 적응적 채널 추정을 통한 고속 ICI 제거 방법 연구)

  • Jeong, Hae-Seong;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.30-37
    • /
    • 2011
  • In this paper, we propose a fast ICI suppression algorithm with adaptive channel estimation for the LTE-Advanced uplink system. In order to effectively remove phase noise and carrier frequency offset at time varying channel, we use the comb type pilot. The purpose is to improve performance by reducing computational complexity than conventional PNFS(Phase Noise & Frequency offset Suppression) algorithm. We reduce computational complexity by decreasing overlapping computation or unnecessary computation at conventional PNFS algorithm. Also, we propose an effective channel estimation method. We estimate and compensate multipath channel through the proposed adaptive channel estimation method. The BER performance of the proposed method is better about 0.5 dB than the conventional method at the Vehicular A channel.

Performance Analysis and Compensation of FH/SC-FDMA System for the High-Speed Communication in Jamming Channel (재밍 채널에서 고속 통신을 위한 주파수 도약 SC-FDMA 통신 시스템의 성능 분석과 보상)

  • Kim, Jang-Su;Jo, Byung-Gak;Baek, Gwang-Hoon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.6
    • /
    • pp.551-561
    • /
    • 2009
  • FH system is very robust to the jamming interference. OFDM system is very good for the high speed communication system. But, it has high PAPR. SC-FDMA system based on OFT-spread OFDM was proposed to reduce high PAPR. Therefore, in this paper, we like to introduce the FH system into SC-FDMA system, which can be best solution to the jamming hostile environment and for the high power efficiency. Also, OFDM is very sensitive to ICI. Especially, ICI generated by frequency offset and phase noise breaks the orthogonality among sub-carriers, which seriously degrades the system performance. We analyze the performance of the FH SC-FDMA system in the PBJ and MTJ channel. In this paper, the ICI effects caused by phase noise, frequency offset and Doppler effects are analyzed and we like to propose the PNFS algorithm in the equalizer to compensate the ICI influences. Through the computer simulations, we can confirm the performance improvement.